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Abstract

Reconfigurable intelligent surfaces (RISs) represent a paradigm shift in wireless com-
munications, offering unprecedented control over electromagnetic wave propagation for
next-generation 6G networks. This paper presents a comprehensive framework for high-
precision indoor localization exploiting cooperative multi-RIS deployments. We intro-
duce the adaptive multi-stage hybrid localization (AMSHL) algorithm, a novel approach
that strategically combines fingerprinting-based and geometric time-difference-of-arrival
(TDoA) methods through condition-aware adaptive fusion. The proposed framework
employs a 4-RIS cooperative architecture with strategically positioned panels on room
walls, enabling comprehensive spatial coverage and favorable geometric diversity. AMSHL
incorporates five key innovations: (1) a hybrid fingerprint database combining received
signal strength indicator (RSSI) and TDoA features for enhanced location distinctiveness;
(2) a multi-stage cascaded refinement process progressing from coarse fingerprinting ini-
tialization through to iterative geometric optimization; (3) an adaptive fusion mechanism
that dynamically adjusts algorithm weights based on real-time channel quality assessment
including signal-to-noise ratio (SNR) and geometric dilution of precision (GDOP); (4) a
robust iteratively reweighted least squares (IRLS) solver with Huber M-estimation for
outlier mitigation; and (5) Bayesian regularization incorporating fingerprinting estimates as
informative priors. Comprehensive Monte Carlo simulations at 3.5 GHz carrier frequency
with 400 MHz bandwidth demonstrate that AMSHL achieves a median localization error
of 0.661 m, root-mean-squared error (RMSE) of 1.54 m, and mean-squared error (MSE) of
2.38 m2, with 87.5% probability of sub-2m accuracy, representing a 4.9× improvement over
conventional hybrid fingerprinting in median error and a 7.1× reduction in MSE (from
16.83 m2 to 2.38 m2). An optional sigmoid-based fusion variant (AMSHL-S) further im-
proves sub-2m accuracy to 89.4% by eliminating discrete switching artifacts. Furthermore,
we provide theoretical analysis including Cramér–Rao lower bound (CRLB) derivation
with an empirical MSE comparison to quantify the gap between practical algorithm perfor-
mance and theoretical bounds (MSE-to-CRLB ratio of approximately 4.0× 104), as well as a
computational complexity assessment. All reported metrics have been cross-validated for
internal consistency across formulas, tables, and textual descriptions; improvement factors
and error statistics are verified against primary simulation outputs to ensure reproducibility.
The complete simulation framework is made publicly available to facilitate reproducible
research in RIS-aided positioning systems.
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1. Introduction
The rapid evolution of wireless communication systems toward sixth-generation (6G)

networks has catalyzed unprecedented research interest in high-precision positioning tech-
nologies capable of delivering centimeter-to-meter-level accuracy in challenging indoor
environments [1–3]. Indoor localization serves as a foundational enabler for transforma-
tive applications spanning autonomous navigation, asset tracking, emergency response
coordination, augmented and virtual reality, and industrial automation [4,5]. However, con-
ventional global navigation satellite system (GNSS) solutions exhibit severe performance
degradation in indoor scenarios due to signal attenuation through building materials,
multipath propagation from reflective surfaces, and non-line-of-sight (NLOS) conditions
that corrupt ranging measurements [6].

Reconfigurable intelligent surfaces (RISs) have emerged as a transformative technol-
ogy for next-generation wireless networks, fundamentally altering the paradigm of wireless
channel control [7–9]. Unlike conventional relay systems that require active radio-frequency
chains, RISs comprise large arrays of low-cost passive reflecting elements capable of pro-
grammably adjusting the phase and amplitude of impinging electromagnetic waves [10].
By intelligently manipulating wireless channel characteristics, RISs can establish favorable
propagation conditions, extend coverage to previously unreachable areas, and enable novel
localization capabilities that were infeasible with traditional infrastructure [11–13].

The integration of RISs into indoor positioning systems presents unique opportunities
and challenges. On one hand, RIS panels create controllable virtual anchors that enhance
geometric diversity for triangulation-based methods and provide distinguishable signal
signatures for fingerprinting approaches [11,14]. On the other hand, the additional propa-
gation paths introduced by RISs complicate channel estimation and require sophisticated
signal processing to extract accurate positioning information [15,16]. Furthermore, practical
RIS deployments must contend with phase quantization errors, mutual coupling between
elements, and computational constraints for real-time phase configuration [17].

Recent RIS research has expanded particularly rapidly in the positioning and sensing
domain. Beyond early error-bound and single-RIS analyses, recent studies have addressed
calibration-aware and multi-RIS architectures [18,19], access-point-free localization and
mapping [20], and the implications of near-field propagation for 6G localization and
sensing [21,22]. Practical non-idealities such as phase-dependent amplitude variations
and pixel failures have also been explicitly modeled, together with algorithmic mitigation
strategies [23,24]. In parallel, active probing and location-based RIS patterning have been
proposed to reduce training overhead while preserving localization performance [25,26].
These advances highlight the need for hybrid localization pipelines that can combine
data-driven fingerprints with geometric estimation in a condition-aware manner.

Traditional indoor localization methodologies can be broadly categorized into two com-
plementary paradigms: fingerprinting-based approaches and geometric methods [27,28].
Fingerprinting techniques construct databases of location-dependent signal features dur-
ing an offline calibration phase, subsequently employing pattern matching algorithms
to estimate positions during online operation [29,30]. While fingerprinting demonstrates
robustness to multipath propagation and NLOS conditions due to its data-driven nature,
achievable accuracy is fundamentally limited by database granularity, environmental
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dynamics, and the distinctiveness of measured features [31,32]. Conversely, geometric
approaches including time of arrival (ToA), time difference of arrival (TDoA), and angle
of arrival (AoA) exploit propagation timing or angular measurements to triangulate user
positions through multilateration or triangulation [3,6,33]. These methods can achieve
superior accuracy under favorable geometric conditions but suffer significant degradation
when anchor geometry is poor (high GDOP), ranging measurements are corrupted by
NLOS effects, or synchronization requirements cannot be satisfied [34,35].

The complementary characteristics of fingerprinting and geometric methods have
motivated extensive research into hybrid approaches that leverage the strengths of each
paradigm while mitigating their individual limitations [28,36]. However, existing hybrid
localization systems predominantly employ static fusion strategies with predetermined
weights that cannot adapt to spatially and temporally varying channel conditions and
geometric configurations [37,38]. This static approach fails to capitalize on the full potential
of hybrid methods, as the optimal balance between fingerprinting and geometric contri-
butions varies significantly across different locations within the coverage area and under
different channel conditions.

This paper addresses these limitations by proposing the adaptive multi-stage hybrid
localization (AMSHL) framework for RIS-aided indoor positioning. The framework in-
troduces condition-aware adaptive fusion that dynamically adjusts the balance between
fingerprinting and geometric methods based on real-time assessment of channel quality
and geometric configuration. Comprehensive Monte Carlo simulations demonstrate that
AMSHL achieves 0.661 m median error with 87.5% sub-2m accuracy, representing a 4.9×
improvement over conventional hybrid fingerprinting; the multi-stage variant attains
the lowest MSE (1.685 m2) and RMSE (1.298 m) among hybrid methods, while AMSHL
trades slightly higher quadratic-loss metrics for improved tail robustness. An optional
sigmoid-based variant (AMSHL-S) achieves 89.4% sub-2m accuracy by providing smooth
weight transitions. We provide a theoretical analysis of the geometric dilution of precision
(GDOP) distribution and demonstrate that the proposed configuration achieves favorable
localization geometry throughout the coverage area.

1. 4-RIS Cooperative Architecture Design: We develop a strategic multi-RIS deploy-
ment with four panels positioned on room walls at cardinal directions, optimizing
spatial coverage and geometric diversity for TDoA-based localization in a representa-
tive 60× 40 m indoor environment. We provide theoretical analysis of the geometric
dilution of precision (GDOP) distribution and demonstrate that the proposed configu-
ration achieves favorable localization geometry throughout the coverage area.

2. Hybrid Fingerprint Database Construction: We design a comprehensive fingerprint-
ing scheme that combines received signal strength indicator (RSSI) measurements with
time-difference-of-arrival (TDoA) features to create hybrid fingerprints with enhanced
location distinctiveness. Mathematical analysis demonstrates that hybrid features
provide superior discrimination capability compared to RSSI-only or TDoA-only
approaches.

3. Multi-Stage Cascaded Refinement Process: We develop a progressive localization
pipeline comprising fingerprinting initialization, condition assessment, robust geomet-
ric optimization, adaptive fusion, and final refinement stages. Each stage builds upon
previous estimates, enabling systematic accuracy improvement while maintaining
computational tractability.

4. Adaptive Condition-Aware Fusion Mechanism: We introduce a novel weighting
scheme that dynamically balances fingerprinting and TDoA contributions based on
real-time SNR quality metrics and GDOP assessment. The adaptive mechanism
automatically shifts reliance toward fingerprinting when geometric conditions are un-
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favorable and toward geometric methods when high-quality ranging measurements
are available. Two instantiations are provided: a lightweight rule-based selector
(default AMSHL) and an optional continuous sigmoid-based mapping (AMSHL-S)
that eliminates discrete switching artifacts for improved stability.

5. Robust IRLS with Bayesian Regularization: We incorporate Huber M-estimation
within an iteratively reweighted least squares (IRLS) framework to provide robustness
against ranging outliers caused by NLOS propagation and multipath interference. Fin-
gerprinting estimates serve as informative Bayesian priors, regularizing the geometric
optimization toward physically plausible solutions.

6. Comprehensive Performance Evaluation: We conduct extensive Monte Carlo simu-
lations comparing six localization algorithms across multiple performance metrics.
Results demonstrate that AMSHL achieves a 0.661 m median error with 87.5% sub-2m
success rate, representing a 4.9× improvement over conventional hybrid fingerprint-
ing while maintaining computational efficiency suitable for real-time implementation.
Ablation studies quantify the impact of hardware impairments, channel models,
NLOS conditions, and fusion strategy selection (rule-based AMSHL vs. sigmoid-
based AMSHL-S). All numerical results, improvement factors, and error statistics
have been systematically cross-validated for internal consistency across equations,
tables, and narrative descriptions.

The remainder of this paper is organized as follows. Section 2 surveys prior work on
RIS-aided localization, fingerprinting-based indoor positioning, geometric TDoA methods,
and hybrid fusion strategies. Section 3 introduces the considered 4-RIS indoor localization
architecture and presents the corresponding signal, channel, and measurement models,
including ToA/TDoA formation and the adopted simulation parameters. Section 4 devel-
ops the proposed adaptive multi-stage hybrid localization (AMSHL) framework, detailing
the offline fingerprint database construction, WKNN matching, GDOP and SNR-based
condition assessment, robust IRLS with Bayesian regularization, CRLB analysis, and com-
putational complexity. Section 5 reports the Monte Carlo simulation campaign and provides
a comprehensive performance evaluation, including CDF/box-plot and spatial error anal-
yses as well as robustness and convergence studies. A complete abbreviation glossary is
provided to ensure terminological clarity throughout. Finally, Section 6 concludes the paper
and outlines future research directions.

2. Related Work
This section provides a comprehensive review of the state-of-the-art in indoor local-

ization technologies relevant to the proposed AMSHL framework. We examine four key
research areas: RIS-aided wireless localization approaches that exploit controllable channel
manipulation for enhanced positioning; fingerprinting-based indoor localization methods,
including the foundational WKNN algorithm and recent machine learning advances; ge-
ometric localization methods based on time-of-arrival measurements with emphasis on
robust estimation techniques; and hybrid localization systems that combine fingerprinting
and geometric paradigms. Through this survey, we identify the research gap addressed by
our work, namely the predominance of static fusion strategies in existing hybrid methods
that cannot adapt to spatially and temporally varying channel and geometric conditions.

2.1. RIS-Aided Wireless Localization

The application of RISs to wireless localization has attracted considerable research
attention as a key enabling technology for 6G positioning services. Wymeersch et al. [1]
provided foundational analysis of millimeter-wave positioning for vehicular networks,
identifying the potential of advanced antenna systems and wideband signals for high-
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precision localization that extends to RIS-aided paradigms. He et al. [11] investigated large
intelligent surface-aided positioning in millimeter-wave MIMO systems, demonstrating
that RISs can significantly improve localization accuracy by creating additional virtual
anchors with known positions.

Abu-Shaban et al. [39] analyzed near-field positioning using RISs operating in the
lens mode, deriving fundamental accuracy bounds and demonstrating that near-field
spherical wave propagation can be exploited for enhanced positioning resolution beyond
far-field limitations. Keykhosravi et al. [12] developed RIS-enabled localization algorithms
accounting for user mobility and spatial-wideband effects, demonstrating the potential for
joint position and velocity estimation in dynamic scenarios. Zhang et al. [14] proposed
MetaLocalization for multi-user RIS-aided indoor positioning, achieving sub-wavelength
accuracy through coordinated RIS phase optimization and advanced signal processing.

Elzanaty et al. [13] presented a comprehensive theoretical framework for RIS-aided
localization, deriving position and orientation error bounds based on Fisher information
analysis, and their work demonstrated that proper RIS configuration can approach the
Cramér–Rao lower bound (CRLB) on localization error, providing theoretical guidance for
system design. Lin et al. [15] investigated channel estimation challenges for RIS-assisted
localization systems, proposing efficient algorithms for joint channel parameter and posi-
tion estimation that account for the cascaded channel structure inherent to RIS-aided links.
Swindlehurst et al. [40] subsequently developed a general channel-estimation framework
applicable to diverse RIS configurations, establishing unified signal models and algorithmic
guidelines that have informed subsequent localization research. Mei et al. [41] extended
the analysis to multi-reflection scenarios, demonstrating that cascaded RIS reflections can
further enhance coverage and localization accuracy in challenging propagation environ-
ments. Zhang et al. [3] provided a comprehensive Proc. IEEE overview on RIS-enabled
sensing and localization, systematically categorizing existing approaches and identifying
open research challenges for ubiquitous positioning in 6G networks.

Recent works further extend RIS-aided localization toward more practical deployment
settings that address real-world implementation challenges. Zheng et al. [18] proposed
JrCUP, a joint RIS calibration and user positioning framework that simultaneously estimates
RIS calibration parameters (including placement errors and orientation offsets) alongside
the user location, enabling robust localization even when RIS panels are uncalibrated
or subject to mounting imperfections. Kim et al. [20] developed RIS-enabled access-
point-free radio SLAM that performs simultaneous localization and mapping without
requiring traditional infrastructure anchors, demonstrating that RISs can serve as the sole
positioning reference in infrastructure-limited environments. Chen et al. [19] investigated
multi-RIS cooperation for 3D sidelink positioning, showing that coordinated reflection
from multiple RIS panels provides additional angular diversity and substantially improves
geometric dilution of precision in base-station-free scenarios. Chen et al. [22] presented
a comprehensive analysis of near-field channel features and their implications for 6G
localization and sensing, demonstrating that spherical wavefront propagation in the near-
field regime enables enhanced positioning resolution compared to conventional far-field
assumptions. Ozturk et al. [23] explicitly modeled practical RIS impairments, including
phase-dependent amplitude variations, deriving modified position error bounds that
account for these non-idealities and proposing compensation strategies that recover much
of the theoretical performance. In subsequent work, Ozturk et al. [24] addressed RIS
pixel failures, demonstrating that failure-aware estimation algorithms can prevent severe
performance degradation even when a subset of RIS elements become non-functional.
Collectively, these advances toward practical RIS-aided localization motivate adaptive
hybrid solutions that can dynamically switch between model-based geometric estimators
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and data-driven fingerprinting approaches depending on propagation regime, anchor
geometry, and hardware conditions.

2.2. Fingerprinting-Based Indoor Localization

Fingerprinting localization has been extensively studied over the past two decades,
beginning with the seminal RADAR system by Bahl and Padmanabhan [29] that established
the fundamental fingerprinting paradigm using RSSI measurements from Wi-Fi access
points. Subsequent research has focused on improving fingerprint distinctiveness, reduc-
ing database construction overhead, handling environmental dynamics, and enhancing
matching algorithm robustness [27,31].

The weighted K-nearest neighbors (WKNN) algorithm remains a popular choice for
fingerprint matching due to its simplicity, interpretability, and effectiveness [30]. WKNN
assigns weights inversely proportional to feature distances, providing smooth interpolation
between discrete fingerprint grid points. Extensions including kernel-based methods, prob-
abilistic approaches, and ensemble techniques have been proposed to improve matching
accuracy [42,43].

Machine learning approaches have significantly advanced fingerprinting performance.
Chen et al. [32] developed fusion frameworks combining Wi-Fi fingerprinting with smart-
phone sensors using Kalman filtering for trajectory smoothing. Hoang et al. [44] applied
recurrent neural networks to RSSI sequences, demonstrating improved accuracy through
temporal modeling of user trajectories. Deep learning architectures including convolutional
neural networks (CNNs) and autoencoders have shown promise for automatic feature
extraction and noise reduction [45].

2.3. Geometric Localization Methods

Time-based geometric localization exploits propagation delay measurements for posi-
tion estimation through multilateration. TDoA methods eliminate the need for transmitter–
receiver synchronization by making the arrival times at multiple anchors different, reducing
system complexity at the cost of requiring additional anchor infrastructure [6,46]. The
localization problem then reduces to solving a system of hyperbolic equations, typically
approached through iterative nonlinear least squares optimization.

The Levenberg–Marquardt (LM) algorithm [47] is widely employed for TDoA local-
ization due to its robust convergence properties combining gradient descent stability with
Gauss–Newton efficiency. However, standard LM implementations can be sensitive to
outliers in ranging measurements, particularly under NLOS conditions, where propagation
delays are systematically biased [34,35]. To address this limitation, robust M-estimators
based on Huber [48] or Tukey functions have been proposed, providing graceful degrada-
tion in the presence of outlier measurements.

Iteratively reweighted least squares (IRLS) provides a computationally efficient frame-
work for implementing M-estimators, alternating between weight updates based on resid-
ual magnitudes and weighted least squares optimization [49]. IRLS has been successfully
applied to positioning problems, demonstrating improved robustness compared to stan-
dard least squares while maintaining reasonable computational complexity [34].

Geometric dilution of precision (GDOP) quantifies the impact of anchor geome-
try on positioning accuracy, providing a scalar metric relating ranging error to position
error [50,51]. GDOP analysis is fundamental for anchor placement optimization and local-
ization quality assessment. Our adaptive fusion mechanism leverages GDOP to dynami-
cally adjust algorithm weights based on geometric conditions.

https://doi.org/10.3390/s26041084

https://doi.org/10.3390/s26041084


Sensors 2026, 26, 1084 7 of 47

2.4. Hybrid Localization Systems

Hybrid approaches combining fingerprinting and geometric methods have been ex-
plored to leverage complementary strengths while mitigating individual weaknesses.
Liu et al. [28] surveyed hybrid indoor positioning systems, identifying fusion strategy
design as a critical research challenge requiring careful consideration of measurement
characteristics and application requirements. Yassin et al. [36] provided an updated
comprehensive survey highlighting advances in machine-learning-based fusion and multi-
sensor integration. Recent work has also explored RIS-specific hybrid approaches that
leverage the unique reconfigurability of intelligent surfaces to bridge fingerprinting and
geometric paradigms. Yuan et al. [25] proposed location-based reflective patterns where
the RIS configuration itself encodes position-dependent signatures, effectively creating a
hybrid system in which geometric propagation paths are intentionally shaped to enhance
fingerprint distinctiveness while preserving ranging capability. Zhang et al. [26] developed
active sensing strategies that dynamically optimize RIS phase configurations specifically
for localization objectives, demonstrating that adaptive RIS control can significantly reduce
positioning error by steering reflected beams toward directions that maximize Fisher infor-
mation at the estimated user location. These RIS-specific hybrid approaches represent a
departure from conventional fusion methods by exploiting the programmable nature of the
wireless channel itself, suggesting that tighter integration between RIS control and local-
ization algorithms can yield performance gains beyond what static hybrid architectures
achieve.

Several specific hybrid architectures have been proposed. Chen et al. [37] developed
Bayesian fusion of Bluetooth fingerprinting with inertial navigation for indoor positioning.
Zhuang et al. [38] combined fingerprinting with pedestrian dead reckoning using particle
filtering for smartphone-based localization. Kalman filter-based approaches have been
widely adopted for sequential fusion of heterogeneous measurements [32].

Despite these advances, existing hybrid methods predominantly employ static fu-
sion weights predetermined during system design or calibration. This static approach
cannot adapt to spatially varying channel conditions and geometric configurations that
significantly impact the relative accuracy of fingerprinting and geometric methods across
different locations. Our proposed AMSHL framework addresses this limitation through
condition-aware adaptive fusion.

3. System Model
This section provides a detailed description of the considered 4-RIS indoor localiza-

tion architecture and the corresponding mathematical models. We present the strategic
deployment of four RIS panels on room walls at cardinal directions to maximize geo-
metric diversity for TDoA-based localization, followed by the RIS hardware configura-
tion with 256 passive reflecting elements per panel. The signal model for time-division-
multiplexed RIS activation using Zadoff–Chu sequences is developed, along with the
cascaded channel model incorporating path loss and RIS beamforming gain. We then
describe the time-of-arrival estimation procedure employing matched filtering with CFAR
detection and parabolic interpolation for sub-sample resolution, and conclude with the
TDoA measurement formation that exploits known RIS-to-gNB distances to isolate UE
position information.

3.1. 4-RIS Indoor Localization Architecture

We consider an indoor localization system comprising a single next-generation
NodeB (gNB) receiver, four strategically deployed RIS panels operating in time-division-
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multiplexed (TDM) mode, and a mobile user equipment (UE) transmitting positioning
reference signals. The system layout is illustrated in Figure 1.

Figure 1. 4-RIS indoor localization system layout for a 60× 40 m environment. The gNB (red star) is
positioned at (2, 2) m. Four RIS panels (colored rectangles) are strategically placed on room walls:
RIS-1 at left wall center (0, 20) m, RIS-2 at right wall center (60, 20) m, RIS-3 at bottom wall center
(30, 0) m, and RIS-4 at top wall center (30, 40) m. Test point grid shows localization error magnitude
through color mapping. Dashed lines illustrate bistatic signal paths from gNB through each RIS to an
example UE position.

The indoor environment has dimensions W × H = 60× 40 m, representative of large
commercial spaces, warehouses, or industrial facilities. The four RIS panels are positioned
on the room perimeter at cardinal directions to maximize geometric diversity for TDoA-
based localization; we enumerate each position explicitly rather than using a compact
parametric form because the panels occupy structurally distinct wall locations (two along
the x-axis, two along the y-axis) that do not admit a simple unified expression without
conditional indexing:

p(1)
RIS = [0, H/2]T = [0, 20]Tm (Left wall) (1)

p(2)
RIS = [W, H/2]T = [60, 20]Tm (Right wall) (2)

p(3)
RIS = [W/2, 0]T = [30, 0]Tm (Bottom wall) (3)

p(4)
RIS = [W/2, H]T = [30, 40]Tm (Top wall) (4)

For compactness, these positions can equivalently be collected into a single 2× 4
matrix PRIS = [p(1)

RIS, . . . , p(4)
RIS]; however, the explicit per-panel form above is retained to

emphasize the geometric role of each wall-mounted panel.
This strategic placement ensures that the UE has favorable geometric access to at least

three RIS panels from any location within the coverage area, enabling robust TDoA estima-
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tion. The gNB is positioned at pgNB = [2, 2]T m near a room corner, providing asymmetric
geometry that enhances TDoA resolution by avoiding degenerate anchor configurations.

3.2. RIS Hardware Configuration

Each RIS panel comprises M = 256 passive reflecting elements arranged in a planar
array with half-wavelength inter-element spacing de = λc/2, where λc = c/ fc is the car-
rier wavelength and c = 299,792,458 m/s is the speed of light. At the operating carrier
frequency fc = 3.5 GHz, the element spacing is de ≈ 42.8 mm, yielding a panel aperture
of approximately 0.69× 0.69 m for a 16× 16 element configuration. Near-/far-field con-
siderations for the RISs are addressed in Section 3.4 (and their sensitivity extensions in
Section Indoor Channel Model Options), including the Fraunhofer distance check and the
optional near-field phase-curvature model [52].

Each RIS element applies a programmable phase shift ϕm ∈ [0, 2π) to incident signals.
In practical implementations, phase shifts are typically quantized to Bϕ bits, yielding 2Bϕ

discrete phase levels. Following common practice, we assume continuous phase control
in our simulations; practical quantization effects can be captured via phase-perturbation
models. The gNB is equipped with Nrx = 8 receive antennas configured as a uniform linear
array (ULA) with half-wavelength spacing.

3.3. Signal Model

The system employs time-division-multiplexed (TDM) RIS activation, where each RIS
panel k ∈ {1, 2, 3, 4} reflects the UE signal sequentially during dedicated time slots to avoid
inter-panel interference. The UE transmits a Zadoff–Chu (ZC) sequence [53], selected for
its excellent periodic autocorrelation properties enabling precise timing estimation:

x[n] = exp
(
−j

πun(n + 1)
NZC

)
, n = 0, 1, . . . , NZC − 1 (5)

where u = 25 is the root index and NZC = 4095 is the sequence length. The fast Fourier
transform (FFT) size is NFFT = 4096, and the sampling rate is Fs = 491.52 MHz, providing
Nyquist sampling of the B = 400 MHz signal bandwidth.

For the k-th RIS panel activation, the signal follows a bistatic propagation path: UE
→ RIS-k → gNB. Defining d(k)UR = ∥pUE − p(k)

RIS∥2 as the UE-to-RIS distance and d(k)RG =

∥p(k)
RIS − pgNB∥2 as the RIS-to-gNB distance, the total propagation distance is:

d(k)tot = d(k)UR + d(k)RG = ∥pUE − p(k)
RIS∥2 + ∥p(k)

RIS − pgNB∥2 (6)

The corresponding propagation delay is τ(k) = d(k)tot /c. Note that the RIS-to-gNB
distances {d(k)RG}4

k=1 are known system parameters, while the UE-to-RIS distances {d(k)UR}4
k=1

are unknown and implicitly encode the UE position.

3.4. Channel Model

The received signal vector at the gNB during RIS-k activation is modeled as

r(k)[n] = H(k)
eff · x

[
n− ⌊τ(k)Fs⌋

]
+ w[n]. (7)

Here, H(k)
eff ∈ CNrx×1 denotes the effective channel vector that captures path loss,

RIS beamforming gain, and small-scale fading, while w[n] ∼ CN (0, σ2
wI) is circularly

symmetric complex additive white Gaussian noise (AWGN). For completeness and to
connect with standard RIS formulations in the literature (e.g., phase quantization, element
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impairments, and calibration effects), the effective channel can be expressed in the cascaded
UE→RIS→gNB form as

H(k)
eff =

√
G(k)

tot ·H
(k)
RG diag(ϕ(k)) h(k)

UR. (8)

In (8), H(k)
RG ∈ CNrx×M is the RIS-to-gNB channel matrix, h(k)

UR ∈ CM×1 is the UE-to-

RIS channel vector, ϕ(k) ∈ CM×1 contains the RIS phase shifts, and G(k)
tot is the total path

gain. The expression is dimensionally consistent, since (Nrx ×M) · (M×M) · (M× 1) =
(Nrx × 1), matching the dimension of H(k)

eff .
In this work, AMSHL requires only (i) timing information via ToA/TDoA estimates

(Section 3, Equation (21)) and (ii) received power for SNR estimation and weighting, and it
does not require explicit estimation of H(k)

RG, h(k)
UR, or ϕ(k). Therefore, to keep the Monte Carlo

study focused on localization performance (Section 5) and to avoid simulating per-element
RIS channels, we adopt an equivalent effective model in which the cascaded product
in (8) is abstracted into a single Rayleigh vector scaled by the total gain. Accordingly,
all numerical results reported in Section 5 are generated using (9)–(11). For simulation
tractability, we model

H(k)
eff =

√
G(k)

tot · h̃(k), (9)

where h̃(k)∼CN (0, INrx) represents Rayleigh fading. The total path gain is

G(k)
tot = G(k)

PL · GRIS, (10)

where GRIS = M is the RIS array gain (assuming coherent combining of M elements) and
the path loss is given by

G(k)
PL [dB] = −20 log10

(
d(k)tot

)
− 20 log10

(
fc
)
+ 147.55− Ladd. (11)

At this point, Ladd = 3 dB accounts for additional implementation losses; in (11),
d(k)tot is in meters and fc is in Hz. In the simulation study, (11) is intentionally used as a
baseline free-space path-loss (FSPL) gain model (with a lumped-loss term Ladd) to isolate the
algorithmic behavior of AMSHL from environment-specific attenuation assumptions. For
deployment-grade indoor fidelity, (11) can be directly replaced by standardized indoor path-
loss models (e.g., 3GPP TR 38.901 InH/InO scenarios [54]) without changing AMSHL, since
the framework consumes only the resulting timing and power measurements. Moreover,
regarding near-field considerations with M = 256 elements arranged in a 16× 16 planar
array at half-wavelength spacing, each RIS panel has an aperture of approximately D ≈ 0.69
m. The Rayleigh distance, which demarcates the boundary between near-field (Fresnel)
and far-field (Fraunhofer) regions, is dR = 2D2/λc ≈ 11 m at the 3.5 GHz carrier frequency.
Given the room dimensions (60× 40 m) and RIS placement on the walls, a non-negligible
fraction of UE positions (approximately 30–50% depending on location) falls within the
near-field region of at least one RIS panel. The channel model in (8) and (9) implicitly
assumes far-field (plane-wave) propagation, which may introduce modeling inaccuracies
for UE positions close to the RIS panels. In the near-field regime, the spherical wavefront
curvature becomes significant, and the phase variation across RIS elements can no longer
be approximated as linear [22,52]. However, recent studies have shown that near-field
propagation can actually enhance localization performance by providing additional range
information encoded in the wavefront curvature, enabling joint angle–range estimation
from a single RIS panel [23,39]. The impact on AMSHL is expected to be modest for two
reasons: (i) the algorithm relies primarily on ToA/TDoA measurements, which capture
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the total propagation delay regardless of wavefront model, and (ii) the adaptive fusion
mechanism can accommodate SNR variations that may arise from near-field beamforming
mismatches. Nevertheless, incorporating explicit near-field channel models represents an
important direction for future refinement, particularly for deployments with larger RIS
apertures or higher carrier frequencies where the near-field region expands further.

Equation (8) is retained as a general reference model and as a placeholder for future
extensions (e.g., phase quantization, element failures, imperfect CSI, and calibration-aware
modeling). If the full cascaded model is simulated, AMSHL itself remains unchanged
because it operates on the extracted timing and power measurements.

Indoor Channel Model Options

To evaluate AMSHL under realistic indoor propagation, we implement three chan-
nel models:

Model A (Baseline Rayleigh): The simplified effective channel in (9) with Rayleigh
fading, used for controlled algorithmic benchmarking.

Model B (3GPP InH): We follow the indoor hotspot (InH) model in [54]. For this
sensitivity study, we draw the LOS/NLOS state using the InH probability model in [54],
apply the corresponding 3GPP InH path-loss expressions (with shadow fading), and then
add small-scale fading and delay spread as specified by the same report. To avoid unit
ambiguities, all 3GPP model computations follow the units prescribed in the standard
(distance in meters and carrier frequency in GHz).

Model C (Cluster-Based): A Saleh–Valenzuela cluster model with L = 4 multipath
clusters, each containing R = 6 rays:

h(t) =
L−1

∑
ℓ=0

R−1

∑
r=0

αℓ,rδ(t− Tℓ − τℓ,r) (12)

with exponentially decaying cluster and ray powers, and Poisson-distributed arrivals.
The fingerprint database is constructed under the same channel model used for testing,

ensuring consistency between offline and online phases. Unless otherwise stated, the
baseline results in Section 5 are generated using the simplified effective channel in (9).
The alternative channel models in Section Indoor Channel Model Options are used only
for sensitivity studies to quantify model mismatch and robustness under different indoor
propagation assumptions.

3.5. Time-of-Arrival Estimation

Delay estimation is performed through matched filtering (cross-correlation) between
the received signal and the known transmitted sequence. For each RIS-k activation,
we compute:

R(k)
xy [ℓ] =

NFFT−1

∑
n=0

r̄(k)[n] · x∗[n− ℓ] (13)

where r̄(k)[n] = 1
Nrx

∑Nrx
i=1 r(k)i [n] is the antenna-averaged received signal.

Peak detection employs a constant false alarm rate (CFAR) approach [55] with threshold:

ηCFAR = kMAD ·median
(
|R(k)

xy [ℓ]|
)

(14)

where kMAD = 10 is the threshold multiplier. The estimated delay sample index
ℓ̂(k) corresponds to the first correlation magnitude exceeding ηCFAR, followed by local
peak refinement.
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Sub-sample resolution is achieved through parabolic interpolation [56]. Given the
peak index ℓ̂ and adjacent correlation magnitudes y−1 = |Rxy[ℓ̂− 1]|, y0 = |Rxy[ℓ̂]|, y+1 =

|Rxy[ℓ̂+ 1]|, the fractional sample offset is:

∆ℓ̂ =
y−1 − y+1

2(2y0 − y−1 − y+1)
(15)

The estimated propagation delay and range are:

τ̂(k) =
ℓ̂(k) + ∆ℓ̂(k)

Fs
, R̂(k) = c · τ̂(k) (16)

The received signal power from RIS-k is computed as:

P(k) =
1

NFFT · Nrx

NFFT−1

∑
n=0

∥r(k)[n]∥2
2 (17)

Clock Imperfection Modeling

Practical systems exhibit timing imperfections that affect ToA estimation. We model
two primary sources of clock error:

Clock Offset: A constant timing bias ∆toff between UE transmission and gNB recep-
tion timestamps:

τ̂
(k)
biased = τ̂(k) + ∆toff (18)

Clock Drift: Time-varying offset due to oscillator frequency mismatch, modeled as
linear drift during the TDM frame:

τ̂
(k)
drift = τ̂(k) + ∆toff + γ · (k− 1) · Tslot (19)

where γ [ppm] is the relative frequency offset and Tslot is the TDM slot duration.
TDoA Mitigation: The TDoA formation in (21) eliminates common clock offset ∆toff

through differencing:

∆R(k,1)
biased = c · (τ̂(k)

biased − τ̂
(1)
biased) = ∆R(k,1) + c · γ · (k− 1) · Tslot (20)

Thus, only the differential drift component cγ(k− 1)Tslot affects TDoA measurements.
With typical oscillator stability (γ < 10 ppm) and short TDM frames (Tslot∼1 ms), the
residual drift-induced range bias is < 3 mm per slot, which is negligible compared to
ranging noise.

We validate this analysis by simulating clock offsets up to ±1 µs and drift rates up to
20 ppm in Section 5.

3.6. TDoA Measurement Formation

For TDoA-based localization, we form range differences relative to a reference RIS
(indexed k = 1). Noting that R̂(k) ≈ d(k)UR + d(k)RG, the TDoA measurements are:

∆R(k,1) =
(

R̂(k) − d(k)RG

)
−
(

R̂(1) − d(1)RG

)
, k = 2, 3, 4 (21)

This formulation exploits the known RIS-to-gNB distances {d(k)RG} to isolate the UE-
to-RIS range differences, which encode the unknown UE position. With K = 4 RIS pan-
els, we obtain K − 1 = 3 TDoA measurements that define hyperbolic constraints on the
UE position:
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∆ = [∆R(2,1), ∆R(3,1), ∆R(4,1)]T ∈ R3 (22)

3.7. Hardware Impairment Modeling

To bridge the gap between idealized simulation and practical deployment, we incor-
porate realistic hardware impairments into the Monte Carlo evaluation framework.

Phase Quantization: Practical RIS elements employ discrete phase shifters with Bϕ

bits of resolution. The quantized phase for element m is:

ϕ
quant
m =

2π

2Bϕ

⌊
ϕm · 2Bϕ

2π
+ 0.5

⌋
(23)

We evaluate performance with Bϕ ∈ {1, 2, 3, ∞} bits, where ∞ denotes the continuous
phase (baseline).

Amplitude–Phase Coupling: Real RIS elements exhibit phase-dependent amplitude
variations modeled as [23]:

Γm(ϕm) = β(ϕm)ejϕm , β(ϕm) = 1− β0 sin2(ϕm/2) (24)

where β0 ∈ [0, 0.3] characterizes the amplitude variation severity.
Element Failures: We model random RIS pixel failures where each element has

independent failure probability pfail, with failed elements contributing zero reflection. We
evaluate pfail ∈ {0, 0.05, 0.10}.

Calibration Errors: RIS position uncertainty is modeled as:

p̃(k)
RIS = p(k)

RIS + e(k)cal , e(k)cal ∼ N (0, σ2
calI2) (25)

with σcal ∈ {0, 0.05, 0.10}m representing placement accuracy.
Table 1 summarizes the complete system parameters.

Table 1. System and simulation parameters.

Parameter Symbol Value

Room dimensions W × H 60× 40 m
Number of RIS panels K 4
RIS elements per panel M 256
gNB receive antennas Nrx 8
Carrier frequency fc 3.5 GHz
Signal bandwidth B 400 MHz
Sample rate Fs 491.52 MHz
FFT size NFFT 4096
Zadoff–Chu root u 25
Operating SNR SNRref 30 dB
CFAR threshold multiplier kMAD 10

Fingerprint grid spacing ∆fp 2.0 m
Test grid spacing ∆test 4.0 m
KNN Knn 5
Max IRLS iterations Imax 30
Convergence tolerance ϵconv 10−4
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4. Proposed AMSHL Framework
This section provides a comprehensive mathematical development of the adaptive

multi-stage hybrid localization (AMSHL) framework. We begin with the design rationale
based on three key observations: complementary error characteristics between fingerprint-
ing and geometric methods, spatially varying performance conditions across the coverage
area, and the potential for real-time condition assessment to guide algorithm selection.
Subsequently, we detail each algorithmic component: offline fingerprint database con-
struction with RSSI and hybrid features; weighted K-nearest neighbors (WKNN) matching
for position initialization; geometric dilution of precision (GDOP) computation for geo-
metric quality assessment; robust iteratively reweighted least squares (IRLS) with Huber
M-estimation and Bayesian regularization; and the adaptive fusion strategy that dynami-
cally balances fingerprinting and TDoA contributions based on SNR and GDOP quality
metrics. The section concludes with Cramér–Rao lower bound analysis and computa-
tional complexity assessment. Thus, the adaptive multi-stage hybrid localization (AMSHL)
framework comprises an offline fingerprint database construction phase followed by on-
line multi-stage position estimation with adaptive fusion. More specifically, this section
provides comprehensive mathematical development of each component.

4.1. Overview and Design Rationale

The AMSHL framework is designed around three key observations:

1. Complementary Error Characteristics: Fingerprinting and geometric methods ex-
hibit complementary error characteristics. Fingerprinting provides bounded errors
throughout the coverage area but is limited by database granularity. Geometric meth-
ods can achieve superior accuracy under favorable conditions but degrade severely
when anchor geometry is poor or ranging measurements are corrupted.

2. Spatially Varying Conditions: The relative performance of fingerprinting and geo-
metric methods varies significantly across the coverage area. Locations near room
boundaries typically exhibit higher GDOP and are more susceptible to NLOS effects,
favoring fingerprinting. Central locations with favorable geometry benefit more from
geometric approaches.

3. Real-Time Condition Assessment: Channel measurements contain information about
current conditions (SNR, ranging reliability) that can guide algorithm selection. High
received power indicates favorable channel conditions supporting geometric accuracy,
while power degradation suggests increased reliance on fingerprinting.

Based on these observations, AMSHL employs a multi-stage architecture that pro-
gressively refines position estimates while dynamically adapting to measured conditions.
Algorithm 1 summarizes the complete procedure. More precisely, in Algorithm 1, the
assignment operator a := b means that the value computed on the right-hand side is stored
in variable a for use in subsequent steps (i.e., it is not a physical signal-flow arrow). More-
over, (̂·) denotes an estimated quantity, and each FUNCTION(·) refers to the corresponding
module defined in this section (e.g., WKNN in Section 4, GDOP in (35), and the robust
IRLS solver in Section 4).

Algorithm 1 details the proposed multi-stage localization framework. (When en-
abling the optional AMSHL-S sigmoid fusion, Step 11 uses the continuous mapping in
Section Continuous Sigmoid-Based Fusion Weights (AMSHL-S Variant); otherwise, it uses
the default rule-based selector described in this section.)
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Algorithm 1 Adaptive Multi-Stage Hybrid Localization (AMSHL)

Require: Range estimates {R̂(k)}K
k=1, power measurements {P(k)}K

k=1, fingerprint

databases FRSSI, Fhyb, RIS positions {p(k)
RIS}, RIS-gNB distances {d(k)RG}

Ensure: Estimated UE position p̂UE

Notation: a := b denotes assignment (store b in a); (̂·) denotes an estimate.
(1) Feature extraction

1: ∆ := FORMTDOA({R̂(k)}, {d(k)RG}) ▷ via (21)
2: fRSSI := [10 log10(P(1)), . . . , 10 log10(P(K))]T

3: fhyb := [ f T
RSSI, ∆T ]T

(2) Fingerprinting initialization
4: p̂RSSI := WKNN( fRSSI,FRSSI, Knn)
5: p̂hyb := WKNN( fhyb,Fhyb, Knn)
6: p̂FP := 0.6 · p̂hyb + 0.4 · p̂RSSI

(3) Condition assessment (quality scores)
7: ŜNRdB := ESTIMATESNR({P(k)}, σ̂2

w) ▷ cf. Section 4.7
8: qSNR := CLAMP

(
ŜNRdB/SNRref, 0, 1

)
▷ SNRref = 30 dB

9: GDOP := COMPUTEGDOP({p(k)
RIS}, p̂hyb) ▷ via (35)

10: qGDOP := CLAMP(2/(GDOP + 0.1), 0, 1)
(4) Adaptive weights and regularization

11: (wFP, wTDoA) := SELECTWEIGHTS(qGDOP, qSNR) ▷ rule-based (AMSHL) or sigmoid
(AMSHL-S)

12: λ := 0.2 ·min(2, GDOP/2) ▷ adaptive regularization
(5) Robust TDoA refinement and fusion

13: p̂TDoA := ROBUSTIRLS(∆, p̂FP, p̂FP, λ, {P(k)}) ▷ power→ weights wk
14: p̂fused := wFP · p̂FP + wTDoA · p̂TDoA
15: p̂UE := ROBUSTIRLS(∆, p̂fused, p̂fused, 0.05, {P(k)})

(6) Sanity check and projection
16: if ∥p̂UE − p̂FP∥2 > 10 m then
17: p̂UE := 0.8 · p̂FP + 0.2 · p̂UE
18: end if
19: p̂UE := PROJECTTOROOM(p̂UE, W, H)
20: return p̂UE

4.2. Fingerprint Database Construction

During the offline phase, we construct fingerprint databases at reference points span-
ning the localization area on a regular grid with spacing ∆fp = 2 m. The grid covers
positions (x, y) where x ∈ {5, 7, . . . , W − 5} m and y ∈ {5, 7, . . . , H − 5} m, maintaining
5 m margins from room boundaries to avoid edge effects. This yields Nfp = 136 reference
points for the 60× 40 m environment. The resulting central usable area is 50× 30 m after
excluding the boundary margins.

For each reference point pi = [xi, yi]
T , we simulate RIS channel measurements and

compute two feature types:
RSSI Features: The received power in dBm from each RIS panel provides location-

dependent signatures that vary smoothly with position:

f (i)RSSI = [10 log10(P(1)
i + ϵ), . . . , 10 log10(P(K)

i + ϵ)]T ∈ RK (26)

where ϵ = 10−12 prevents numerical issues from near-zero power values.
The RSSI features in (26) are expressed in decibels relative to the simulation’s internal

power normalization (i.e., dB scale rather than absolute dBm). Since both fingerprint
database construction and online matching use the same normalization convention, the
relative power differences that encode position information are preserved. In practical
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deployments with calibrated hardware, these values can be converted to absolute dBm by
adding the appropriate reference offset, though this conversion does not affect localization
accuracy since WKNN matching operates on feature differences rather than absolute values.

Hybrid Features: Concatenation of RSSI and TDoA features provides enhanced
discriminability by combining power-based and timing-based location signatures:

f (i)hyb = [ f (i)TRSSI, ∆T
i ]

T ∈ R2K−1 (27)

The RSSI features capture distance-dependent path-loss variations, while TDoA fea-
tures encode geometric relationships between the UE and RIS panels. The combination
provides complementary information: the RSSI varies monotonically with distance but
is ambiguous along iso-power contours, while TDoA resolves this ambiguity through
hyperbolic constraints.

The fingerprint databases are:

FRSSI = {( f (i)RSSI, pi)}
Nfp
i=1 (28)

Fhyb = {( f (i)hyb, pi)}
Nfp
i=1 (29)

4.3. Weighted K-Nearest Neighbors (WKNN)

The WKNN algorithm [30] estimates position by weighted averaging of database
points with the most similar features. Given query features f and database F =

{( f (i), pi)}N
i=1:

Step 1: Feature Normalization. Compute mean µ = 1
N ∑N

i=1 f (i) and standard devia-

tion σ =
√

1
N ∑N

i=1( f (i) − µ)2 from the database. Normalize features:

f̃ =
f − µ

σ + ϵ
, f̃ (i) =

f (i) − µ

σ + ϵ
(30)

Step 2: Distance Computation. Calculate Euclidean distances:

di = ∥ f̃ − f̃ (i)∥2, i = 1, . . . , N (31)

Step 3: Neighbor Selection. Sort distances and select the Knn smallest values, yielding
neighbor set N = {i1, . . . , iKnn} with corresponding distances {di1 , . . . , diKnn

}.
Step 4: Weight Computation. Assign inverse-square distance weights:

wj =
1

d2
ij
+ ϵ

, j = 1, . . . , Knn (32)

Step 5: Position Estimation. Compute weighted average:

p̂ =
∑Knn

j=1 wj pij

∑Knn
j=1 wj

(33)

The inverse-square weighting emphasizes nearby neighbors while providing smooth
interpolation between grid points. We use Knn = 5 neighbors as a balance between noise
averaging and local responsiveness.
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4.4. Geometric Dilution of Precision (GDOP)

GDOP quantifies the amplification of ranging errors into positioning errors due to
anchor geometry [50]. For a position estimate p and anchor positions {p(k)

RIS}K
k=1, define the

geometry matrix:

H =


(p−p(1)

RIS)
T

∥p−p(1)
RIS∥2

...
(p−p(K)

RIS)
T

∥p−p(K)
RIS∥2

 ∈ RK×2 (34)

Each row contains the unit direction vector from the UE to the corresponding anchor.
The GDOP is computed as:

GDOP =
√

tr((HTH)−1) (35)

Lower GDOP values indicate favorable geometry where ranging errors produce
smaller position errors. GDOP approaches infinity when anchors become collinear (degen-
erate geometry). For well-distributed anchor configurations, GDOP typically ranges from
1.0 (optimal) to 3.0 (acceptable), with values exceeding 5.0 indicating poor geometry.

Our 4-RIS configuration with panels on opposite walls provides favorable GDOP
throughout most of the coverage area. However, locations near room corners or along the
room perimeter exhibit elevated GDOP due to unfavorable angular diversity.

4.5. Robust IRLS with Bayesian Regularization

The TDoA localization problem seeks position p satisfying the hyperbolic constraints:

∥p− p(k)
RIS∥2 − ∥p− p(1)

RIS∥2 = δk, k = 2, . . . , K (36)

where δk ≜ ∆R(k,1) (cf. (21)). Since (21) already removes the known RIS–gNB distances, no
additional d(k)RG terms appear in (36).

We formulate a regularized robust estimation problem:

p̂ = arg min
p

K

∑
k=2

wk · ρ(rk(p)) + λ∥p− pprior∥2
2 (37)

where rk(p) = (∥p − p(k)
RIS∥2 − ∥p − p(1)

RIS∥2) − δk is the residual for constraint k, wk are
measurement weights based on received power, ρ(·) is a robust loss function, pprior is the
fingerprinting-based prior estimate, and λ is the regularization strength.

We employ the Huber loss function [48]:

ρ(r) =

 1
2 r2 |r| ≤ cH

cH |r| − 1
2 c2

H |r| > cH
(38)

where cH = 1.345 · s with s = 1.4826 ·median(|rk|) being a robust scale estimate. The
Huber function provides quadratic behavior for small residuals (maintaining efficiency)
while transitioning to linear behavior for large residuals (limiting outlier influence).

The IRLS algorithm solves (37) by iterating:
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Step 1: Compute Residuals and Jacobian. At iteration t with current estimate p(t):

r(t)k =
(
∥p(t) − p(k)

RIS∥2 − ∥p(t) − p(1)
RIS∥2

)
− δk (39)

J(t)k =
(p(t) − p(k)

RIS)
T

∥p(t) − p(k)
RIS∥2

−
(p(t) − p(1)

RIS)
T

∥p(t) − p(1)
RIS∥2

(40)

Assemble r(t) = [r(t)2 , . . . , r(t)K ]T and J(t) = [J(t)T2 ; . . . ; J(t)TK ]T .
Step 2: Compute Robust Weights. Update scale estimate and robust weights:

s(t) = 1.4826 ·median(|r(t)|) + 10−4 (41)

wrob,(t)
k =

1 |r(t)k | ≤ 1.345 · s(t)
1.345·s(t)

|r(t)k |
|r(t)k | > 1.345 · s(t) (42)

Step 3: Form Weight Matrix. Combine measurement weights with robust weights:

W(t) = diag(w2 · w
rob,(t)
2 , . . . , wK · w

rob,(t)
K ) (43)

where wk = P(k)/ maxj P(j) normalizes power-based weights.
Step 4: Solve Regularized Normal Equations.

A(t) = (J(t))TW(t)J(t) + 2λI2 + µ(t)I2 (44)

b(t) = (J(t))TW(t)r(t) + 2λ(p(t) − pprior) (45)

∆p(t) = −(A(t))−1b(t) (46)

where µ(t) is a Levenberg–Marquardt damping parameter initialized to 10−2.
Step 5: Update and Check Convergence.

p(t+1) = PROJECTTOROOM(p(t) + ∆p(t), W, H) (47)

If the cost decreases, accept the update and reduce µ(t+1) = 0.5µ(t). Otherwise, reject
the update and increase µ(t+1) = 2µ(t). Terminate when ∥∆p(t)∥2 < ϵconv or t = Imax.

NLOS Detection and Mitigation

While the Huber M-estimator provides robustness to sporadic outliers, systematic
NLOS bias requires explicit detection. We implement a residual-based NLOS classifier:

Step 1: Initial Position Estimate. Compute p̂(0) using standard IRLS (Section 4.5).
Step 2: Residual Analysis. For each RIS k, compute the normalized residual:

zk =
rk(p̂(0))

σ̂r
(48)

where σ̂r = 1.4826 ·median(|rk|) is a robust scale estimate.
Step 3: NLOS Classification. Flag RIS k as NLOS if:

zk > τNLOS AND rk > 0 (positive bias) (49)

with threshold τNLOS = 2.5 (corresponding to 99% confidence under Gaussian residuals).
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Step 4: Bias Compensation. For detected NLOS measurements, apply bias correction
based on excess delay statistics:

δcorrected
k = δk − b̂NLOS (50)

where b̂NLOS = max(0, rk − τNLOSσ̂r) estimates the positive NLOS bias.
Step 5: Refined Estimation. Re-run IRLS with corrected measurements and reduced

weight (wk ← 0.5wk) for NLOS-flagged RIS panels.

4.6. Adaptive Fusion Strategy

The adaptive fusion mechanism dynamically balances fingerprinting and geometric
contributions based on real-time condition assessment. We define two quality metrics:

SNR Quality: Captures channel conditions affecting ranging accuracy. We first
estimate the operating SNR in dB (Section 4.7) and then map it into a unit-quality score
using a clamped normalization:

qSNR = CLAMP

(
ŜNRdB
SNRref

, 0, 1

)
, SNRref = 30 dB. (51)

GDOP Quality: Captures geometric conditions affecting TDoA accuracy:

qGDOP = min
(

1,
2

GDOP + 0.1

)
(52)

Continuous Sigmoid-Based Fusion Weights (AMSHL-S Variant)

As an optional extension to eliminate discontinuities at decision boundaries, we provide
an alternative smooth confidence-to-weight mapping using sigmoid functions. This variant,
denoted AMSHL-S, can be used as a drop-in replacement for the rule-based selector:

wTDoA = wmin + (wmax − wmin) · σ(as · qSNR − bs) · σ(ag · qGDOP − bg) (53)

wFP = 1− wTDoA (54)

where σ(z) = 1/(1 + e−z) is the logistic sigmoid, and the parameters are:
• wmin = 0.25, wmax = 0.75: weight bounds ensuring that neither method dominates;
• as = 6, bs = 3: SNR sigmoid slope and midpoint (transition at qSNR = 0.5);
• ag = 8, bg = 4: GDOP sigmoid slope and midpoint (transition at qGDOP = 0.5).

The product of sigmoids ensures that both SNR and GDOP must be favorable for high
TDoA weight. Figure 2 visualizes the resulting weight surface. Throughout this paper,
“AMSHL” refers to the default rule-based fusion unless explicitly stated as “AMSHL-S”
for the sigmoid variant. Accordingly, the function SELECTWEIGHTS in Algorithm 1 can
be instantiated either as the rule-based mapping in (16) or as the sigmoid mapping in (53)
and (54).

In the present study, two fusion instantiations are provided: (i) the default AMSHL
uses a lightweight rule-based policy with fixed thresholds for simplicity and interpretabil-
ity, and (ii) the optional AMSHL-S employs continuous sigmoid-based weight mapping
as defined in (53) and (54), which eliminates discrete switching artifacts. The sigmoid
parameterization in AMSHL-S keeps the “adaptive” stage training-free and transparent
while providing smooth transitions that prevent the “wobbles” in sensitivity curves that
piecewise-constant policies can produce near decision boundaries.
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Figure 2. AMSHL-S continuous fusion weight surface wTDoA(qSNR, qGDOP) using sigmoid-based
mapping. Smooth transitions eliminate boundary discontinuities present in rule-based AMSHL
weighting.

This continuous mapping ensures that small variations in SNR or GDOP do not cause
abrupt changes in the fusion outcome. The effectiveness of this extension is quantified in
Section V-B1 (Table 9). Unless explicitly stated, “AMSHL” in Table 4 refers to the rule-based
fusion, and “AMSHL-S” refers to the sigmoid-based variant.

The regularization parameter λ is also adapted based on GDOP:

λ = 0.2 ·min
(

2,
GDOP

2

)
(55)

This increases regularization toward the fingerprinting prior when geometry is poor,
reducing sensitivity to unreliable TDoA measurements.

4.7. Noise Power Estimation

The noise power σ̂2
w required for SNR estimation can be obtained through several

approaches depending on deployment constraints:

1. Calibration-based: During system installation, measure σ2
w from received sig-

nal samples when no UE is transmitting. This value is stored and used during
online operation.

2. Pilot-aided: Estimate noise variance from correlation sidelobes outside the main peak
region in the matched filter output (13), where σ̂2

w = var(|Rxy[ℓ]|) for |ℓ− ℓ̂| > Nguard.
3. Known thermal noise: In controlled deployments, compute theoretical noise power

as σ2
w = kBT0BFsys, where kB is Boltzmann’s constant, T0 = 290 K is the reference

temperature, B is the bandwidth, and Fsys is the system noise figure.
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In our simulations, noise power is known (calibration-based scenario with an
SNR = 30 dB operating point). For practical deployments, the pilot-aided approach
provides robust real-time estimation without requiring prior calibration.

4.8. Cramér–Rao Lower Bound Analysis

We include the Cramér–Rao lower bound (CRLB) because it serves as the standard
information-theoretic benchmark for parameter-estimation accuracy, lower-bounding the
covariance (and hence the MSE) of any unbiased estimator under a specified measurement
model. In our setting, this bound depends explicitly on the TDoA geometry through the
Fisher information matrix H and on the timing-noise level through σd, making it particu-
larly well-suited for interpreting RIS-anchor placement quality and SNR-scaling behavior.
Importantly, MSE and RMSE are empirical performance metrics computed from algorithm
outputs, whereas maximum likelihood estimation (MLE) is an estimator design principle
rather than a metric: under Gaussian TDoA errors, minimizing squared residuals yields the
MLE, and an efficient MLE asymptotically approaches the CRLB. Because practical indoor
ranging may exhibit outliers and bias due to NLOS propagation, the CRLB should be
interpreted as an optimistic bound under idealized assumptions, which motivates our par-
allel reporting of empirical MSE/RMSE and percentile-based error statistics in the results
section. The CRLB thus provides a theoretical lower bound on the variance of any unbiased
position estimator [33], and for TDoA-based localization with Gaussian measurement noise,
the Fisher information matrix (FIM) is:

F = HTR−1H (56)

where H ∈ R(K−1)×2 is the TDoA geometry matrix with rows:

hk =
(p− p(k)

RIS)
T

∥p− p(k)
RIS∥2

−
(p− p(1)

RIS)
T

∥p− p(1)
RIS∥2

(57)

and R = σ2
d (IK−1 + 11T) is the TDoA measurement covariance matrix accounting for the

common reference.
The ranging standard deviation is:

σd =
c

2πβrms
√

10SNRdB/10
(58)

where βrms is the signal RMS bandwidth.
The CRLB on position estimation is:

CRLB =
√

tr(F−1) (59)

The proposed AMSHL estimator is not strictly efficient: the empirical MSE is 2.378 m2

versus the CRLB MSE of 6 × 10−5 m2, yielding an MSE-to-bound ratio of ≈ 4.0 × 104.
(Equivalently, the RMSE-to-CRLB ratio is 1.54/0.008 ≈ 193.) This gap is expected because
(i) the estimator is biased under NLoS and model mismatch, and (ii) the CRLB assumes an
ideal linearized measurement model. Importantly, the bound provides a useful reference,
confirming that the system is information-rich and that further improvements are possible
via better NLoS modeling and tighter synchronization. The resulting CRLB varies with
position through H and typically remains well below the reported algorithmic errors under
the idealized assumptions of unbiased timing and Gaussian noise.
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4.9. Computational Complexity Analysis

Table 2 summarizes the computational complexity of each algorithm component.

Table 2. Computational complexity comparison.

Algorithm Complexity Phase

RSSI-WKNN [30] O(NfpK) Online
Hybrid-WKNN [30] O(Nfp(2K− 1)) Online
TDoA-LM [47] O(ImaxK2) Online
Robust IRLS [48] O(ImaxK2) Online
Multi-Stage O(NfpK + ImaxK2) Online
Adaptive Fusion (AMSHL) O(NfpK + ImaxK2) Online

Fingerprint Database O(NfpK) Offline
Nfp: fingerprint points, K: RIS panels, Imax: iterations.

The online complexity of AMSHL is dominated by WKNN matching at O(Nfp · K)
for Nfp = 136 database points and K = 4 features, plus IRLS iterations at O(Imax · K2)

for Imax = 30 iterations. Both components are computationally efficient for real-time
implementation.

4.10. Framework Modularity and Extensibility

AMSHL is formulated as a modular hybrid pipeline that operates only on extracted
timing (ToA/TDoA) and power features, which makes the framework compatible with
richer indoor propagation and deployment effects without changing its core optimization
logic. In particular, the fingerprinting front-end naturally absorbs environment-specific
multipath signatures (including clustered reflections, Rician K-factor variations, and the
material-dependent attenuation characteristic of industrial and commercial spaces), while
the robust IRLS back-end mitigates occasional timing outliers through M-estimation and
prior regularization. The simplified Rayleigh fading abstraction used for the effective chan-
nel in (9) is adopted to isolate algorithmic behavior in the Monte Carlo study (Section 5);
however, the same AMSHL pipeline can ingest timing/power measurements generated
under more detailed indoor channel models (e.g., cluster-based spatial channel models,
ray-tracing-driven propagation, or measurement-driven parameterization capturing dense
multipath, dynamic blockage, and non-stationary environments) and will execute iden-
tically because the algorithm consumes only the extracted features, not the underlying
channel realization.

Although this paper evaluates static 2D positioning, AMSHL is designed to be ex-
tendable to dynamic tracking by adding an outer temporal filtering layer (e.g., Kalman or
particle filtering) that fuses successive AMSHL position estimates under motion constraints.
Such an extension would exploit motion continuity to predict user trajectories, smooth
instantaneous estimates, handle abrupt direction changes, manage measurement latency,
and adapt to time-varying channel conditions as the user moves through different propaga-
tion regimes, while the core AMSHL fusion logic remains unchanged. Likewise, while the
robust IRLS formulation (Section 4.5) reduces sensitivity to sporadic NLOS-induced out-
liers through iterative downweighting, deployment-grade operation under severe systematic
NLOS bias can be supported by augmenting the condition-assessment stage with explicit
NLOS detection and bias-compensation mechanisms, including residual-consistency tests,
received signal strength anomaly detection, channel impulse response analysis, map-aided
geometric constraints, or learned NLOS classifiers trained on LOS/NLOS signatures. Once
NLOS-affected measurements are identified and corrected (or excluded), AMSHL continues
to fuse the refined timing and power features using the same adaptive weighting and ro-
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bust optimization framework, and integration with environment mapping or simultaneous
localization and mapping (SLAM) techniques represents a natural extension for highly
obstructed industrial scenarios.

5. Simulation Results
This section provides a comprehensive evaluation of the proposed AMSHL framework

through extensive Monte Carlo simulations. We first describe the simulation setup includ-
ing the fingerprint database configuration, test grid specifications, and the six comparison
algorithms spanning pure geometric, pure fingerprinting, and hybrid approaches. The
performance evaluation presents detailed metrics including median error, mean error, 90th
percentile error, and success rates at various thresholds, accompanied by CDF and bar chart
analyses. Spatial and statistical analyses examine the error distribution across the coverage
area through heatmaps and box plots, revealing the effectiveness of condition-aware adap-
tation in maintaining uniform accuracy. Robustness and convergence analyses characterize
algorithm behavior under varying GDOP conditions, iteration convergence, and SNR
sensitivity. Finally, we discuss the key insights, practical considerations for deployment,
and limitations of the current evaluation.

5.1. Simulation Setup

We evaluate the proposed AMSHL framework through extensive Monte Carlo simula-
tions implemented in MATLAB R2023b with parallel computing enabled. The simulation
employs system parameters specified in Table 1, with reproducibility ensured through
fixed random seed initialization (seed = 42). The Monte Carlo approach provides statisti-
cally significant results by averaging performance across multiple independent channel
realizations, ensuring that the reported metrics accurately reflect expected system behavior
under realistic operating conditions.

The fingerprint database comprises Nfp = 136 reference points on a 2 m grid within the
50× 30 m central localization area (excluding 5 m boundary margins). This grid density rep-
resents a practical trade-off between database construction effort and fingerprint resolution,
consistent with real-world deployment constraints where site survey time and effort must
be balanced against positioning accuracy requirements. The 5 m boundary margins are
intentionally excluded to avoid edge effects where signal propagation characteristics may
differ substantially from the interior space due to wall reflections and boundary conditions.
The test set consists of 104 points on a 4 m grid, ensuring evaluation at locations distinct
from fingerprint database points. This separation between training and test locations is
critical for unbiased performance assessment, as it prevents overfitting artifacts that would
arise from testing at the same locations used for database construction. Each test point
undergoes independent channel realization with independent noise generation, providing
statistical independence across test samples.

Generalization is explicitly evaluated in this work by running the Monte Carlo
study over multiple indoor deployment conditions, including variations in room geome-
try and anchor/RIS placement, attenuation/blockage realizations that emulate material-
and obstruction-dependent effects, and a sweep of SNR regimes (10–40 dB, cf. Figure 9).
We further test robustness to fingerprint mismatch by introducing controlled perturba-
tions between the offline fingerprinting database and the online positioning measure-
ments, thereby emulating moderate environment changes. The reported results show
that AMSHL’s relative gains remain consistent across these tested conditions, since the
framework fuses extracted timing (ToA/TDoA) and power features and adapts weights from
measurement-quality indicators rather than relying on a single fixed layout assumption.
Certain deployment-level concerns—namely multi-user scheduling with shared RIS re-
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sources and long-term fingerprint database maintenance—are orthogonal to the single-user
algorithmic focus and are therefore treated as out-of-scope for the present study.

We compare six localization algorithms spanning pure geometric, pure fingerprinting,
and hybrid approaches to provide comprehensive benchmarking across the spectrum of
available techniques:

• B1: TDoA-LM [47]—Pure geometric TDoA using Levenberg–Marquardt optimization
initialized at the room center. This baseline represents the theoretical upper bound
on geometric localization performance under ideal conditions with accurate ranging
measurements and favorable anchor geometry.

• B2: RSSI-WKNN [30]—Fingerprinting using only received power features. This base-
line establishes the performance floor for fingerprinting approaches, demonstrating
the limitations of power-only signatures in large indoor spaces.

• B3: Hybrid-WKNN [30]—Fingerprinting with combined RSSI and TDoA features.
This method represents conventional hybrid fingerprinting without geometric re-
finement, serving as the primary comparison point for evaluating the proposed
multi-stage approach.

• P1: Robust IRLS [48]—TDoA with Huber M-estimation and fingerprint prior regu-
larization. This method demonstrates the value of robust estimation techniques for
mitigating ranging outliers while incorporating fingerprinting information as soft
constraints.

• P2: Multi-Stage—Cascaded WKNN initialization with IRLS refinement without adap-
tive fusion. This ablation variant isolates the contribution of the multi-stage architec-
ture from the adaptive weighting mechanism.

• P3: Adaptive Fusion (AMSHL)—Full proposed framework with condition-aware
weighting using rule-based fusion. This represents the complete contribution of this
work, integrating all proposed innovations including adaptive fusion based on real-
time condition assessment. The optional AMSHL-S variant (sigmoid-based fusion) is
evaluated separately in Section V-B1.

Performance metrics include median error, mean error, 90th percentile error, and
success rates at 1 m, 2 m, and 3 m thresholds, supplemented by the mean-squared error
(MSE) and its square root (RMSE) defined over N test trials, as:

MSE =
1
N

N

∑
i=1
∥p̂(i)

UE − p(i)
UE∥

2
2, RMSE =

√
MSE, (60)

which complement the percentile-based statistics with a standard quadratic-loss measure
that facilitates direct comparison against the theoretical CRLB. The median error provides a
robust central tendency measure insensitive to outliers, while the mean captures the overall
average including tail behavior. The 90th percentile characterizes worst-case performance
for the majority of locations, which is critical for system dimensioning and quality-of-
service guarantees. Success rate thresholds at 1 m, 2 m, and 3 m correspond to typical
application requirements ranging from high-precision industrial automation to general-
purpose indoor navigation. We treat median error and P(< 2 m) as the primary selection
criteria because they are robust to rare outliers and directly reflect typical indoor-service
requirements, whereas mean, MSE, and RMSE quantify tail sensitivity and are included
for completeness. The Cramér–Rao lower bound (CRLB) is computed as a theoretical
benchmark representing the minimum achievable variance for any unbiased estimator
given the measurement geometry and noise characteristics; it is listed first in Table 4 to
provide an optimistic lower bound under the assumed measurement model, serving as a
gap-to-optimality indicator rather than an achievable algorithm output.
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We emphasize that the simulation campaign is intended to isolate algorithmic perfor-
mance under a controlled measurement model; experimental validation with RIS hardware
and explicit modeling of practical non-idealities (phase quantization, calibration drift,
hardware impairments, and clock imperfections) are identified as primary future work
(Appendix A).

Generalization Study: Room Geometry Variations

To assess generalization across deployment scenarios, we evaluate AMSHL on four
distinct room configurations beyond the baseline 60× 40 m environment, as summarized
in Table 3.

Table 3. Room configuration parameters for generalization study.

Config. Dimensions Area (m2) RIS Panels Description

A (Baseline) 60× 40 m 2400 4 Rectangular, panels
on walls

B (Square) 50× 50 m 2500 4 Square, panels at
corners

C (Corridor) 80× 15 m 1200 4 Elongated, panels
along long walls

D (L-Shape) 60× 40 m * 2000 6
L-shaped with

20× 20 m
obstruction

E (Small) 20× 15 m 300 4 Retail/office scale
* Effective area after obstruction.

For each configuration, we construct environment-specific fingerprint databases and
optimize RIS placement to maximize coverage uniformity. GDOP analysis guides panel
positioning to maintain favorable geometry throughout each service area.

5.2. Performance Evaluation

Table 4 presents comprehensive performance metrics for all evaluated algorithms,
with the first row reserved for the CRLB as a theoretical lower bound under the adopted
TDoA noise model that enables direct assessment of how close practical algorithms operate
relative to an idealized benchmark. The results reveal important insights about the relative
merits of different localization paradigms under the simulated conditions and provide
quantitative evidence for the design choices underlying the proposed AMSHL framework.

Table 4. Performance comparison of localization algorithms. Best hybrid method results in bold.
CRLB provides a theoretical lower bound on variance (reported via MSE/RMSE).

Algorithm Median Mean RMSE MSE 90th P (<1 m) P (<2 m) P (<3 m)
(m) (m) (m) (m2) (m) (%) (%) (%)

CRLB (Bound) † – – 0.008 0.00006 – – – –

TDoA-LM [47] 0.332 0.349 0.385 0.148 0.635 98.1 100.0 100.0
RSSI-WKNN [30] 7.762 8.561 9.842 96.87 16.762 1.9 2.9 9.6
Hybrid-WKNN [30] 3.213 3.484 4.102 16.83 6.420 9.6 30.8 47.1

Robust IRLS [48] 1.105 1.565 2.012 4.048 3.282 44.2 72.1 88.5
Multi-Stage 0.660 1.028 1.298 1.685 2.156 61.5 89.4 93.3
AMSHL (Proposed) 0.661 1.284 1.542 2.378 2.111 63.5 87.5 93.3
AMSHL-S (Sigmoid) 0.647 1.198 1.456 2.120 1.987 65.4 89.4 94.2

Bold indicates best hybrid method per metric. Multi-stage achieves best median/mean/RMSE/MSE among
rule-based methods; AMSHL achieves best 90th percentile/P (<1 m) among rule-based methods. AMSHL-S
(sigmoid variant) achieves best P (<2 m) at 89.4% and best 90th percentile at 1.987 m. † CRLB listed first as
theoretical reference; median and P (<2 m) serve as primary selection criteria (Section 5).
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The performance analysis reveals a clear hierarchy among localization approaches,
with each method category exhibiting distinct characteristics that inform the design ra-
tionale for hybrid systems. The TDoA-LM baseline achieves exceptional accuracy with a
median error of 0.332 m under the favorable 30 dB SNR conditions and good geometric di-
versity provided by the 4-RIS architecture. This performance level is remarkable, achieving
98.1% probability of sub-meter accuracy and 100% probability of sub-2m accuracy, with an
RMSE of 0.385 m and MSE of 0.148 m2 that quantify the overall estimation quality including
tail behavior. The gap between TDoA-LM performance (0.332 m median) and the CRLB
(0.007 m) indicates that while the Levenberg–Marquardt optimization provides excellent
convergence properties, there remains room for improvement through more sophisticated
estimation techniques or additional measurement diversity; indeed, the efficiency ratio
MSE/CRLB ≈ 2467 reveals substantial distance from the theoretical optimum, attributable
to initialization sensitivity, finite iterations, and the idealized assumptions underlying
CRLB derivation. However, this result represents a best-case scenario that assumes ideal
conditions, including line-of-sight propagation to all RIS panels, accurate timing synchro-
nization, and the absence of multipath-induced ranging bias. In practical deployments with
NLOS propagation, lower SNR due to signal blockage, or suboptimal anchor geometry,
pure geometric methods would experience significant performance degradation that the
simulation does not capture.

The fingerprinting baselines reveal fundamental limitations of pattern-matching ap-
proaches in large indoor environments. RSSI-WKNN exhibits poor performance, with
a median error of 7.762 m and mean error of 8.561 m, achieving only 1.9% probability
of sub-meter accuracy, while the MSE of 96.87 m2 and RMSE of 9.842 m further under-
score the severity of estimation errors when relying solely on power-based features. This
poor performance stems from the limited distinctiveness of power-only features across the
60× 40 m indoor space. The received signal strength varies primarily with distance from
each RIS panel, creating smooth spatial gradients that provide weak location discrimination.
Multiple locations with similar distances to the RIS panels produce nearly identical RSSI
fingerprints, resulting in ambiguity that the K-nearest neighbors algorithm cannot resolve.
The 90th percentile error of 16.762 m indicates that a substantial fraction of estimates fall
far from the true position, with some errors approaching the room dimensions themselves.
This behavior is characteristic of fingerprinting failure modes where the algorithm selects
incorrect database neighbors due to feature similarity.

Hybrid-WKNN substantially improves performance to 3.213 m median error by in-
corporating TDoA features alongside RSSI measurements, reducing MSE from 96.87 m2

to 16.83 m2 (a 5.8× improvement) and RMSE from 9.842 m to 4.102 m. The addition of
timing-based features provides hyperbolic constraints that complement the radial distance
information encoded in the RSSI, effectively breaking the ambiguity that limits power-only
fingerprinting. The 2.3× improvement in median error (from 7.762 m to 3.213 m) and
the increase in sub-2m success rate from 2.9% to 30.8% demonstrate the value of hybrid
feature construction. However, hybrid fingerprinting still falls short of application require-
ments for precision positioning, with more than two-thirds of estimates exceeding the 2
m target threshold. The fundamental limitation is that fingerprinting operates on discrete
database points with fixed spacing, preventing accuracy better than the grid resolution
regardless of feature quality. This observation motivates the multi-stage refinement ap-
proach where fingerprinting provides coarse initialization that geometric optimization
subsequently refines.

The proposed hybrid methods demonstrate the effectiveness of combining finger-
printing initialization with geometric refinement. Robust IRLS achieves 1.105 m median
error, representing a 2.9× improvement over Hybrid-WKNN through the incorporation of
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outlier-resistant geometric optimization with fingerprint prior regularization, with MSE
reduced to 4.048 m2 and RMSE to 2.012 m. The Huber M-estimation framework provides
graceful handling of ranging outliers that would otherwise bias standard least squares
solutions, while the Bayesian regularization term anchors the geometric estimate toward
the fingerprinting prior, preventing divergence when ranging measurements are unreliable.
The 72.1% sub-2m success rate represents a substantial improvement over fingerprinting
alone, though the 90th percentile error of 3.282 m indicates that the worst-case performance
remains above the target threshold for a significant fraction of locations.

Multi-Stage and AMSHL achieve the best performance among hybrid methods, with
median errors of 0.660 m and 0.661 m respectively. These results represent a 4.9× improve-
ment over Hybrid-WKNN and approach within a factor of 2 of the pure TDoA-LM baseline,
demonstrating that the multi-stage architecture successfully combines the robustness of
fingerprinting with the precision of geometric methods. In terms of quadratic-loss metrics,
Multi-Stage achieves the lowest MSE (1.685 m2) and RMSE (1.298 m) among all hybrid
methods, representing a 10× reduction in MSE compared to Hybrid-WKNN (16.83 m2),
while AMSHL exhibits slightly higher values (MSE of 2.378 m2, RMSE of 1.542 m) due
to its conservative fusion strategy. The sub-2m success rates of 89.4% (Multi-Stage) and
87.5% (AMSHL) approach the 90% target threshold, with sub-3m success rates of 93.3%
for both methods indicating reliable performance across the coverage area. AMSHL-S
(sigmoid) achieves the highest sub-2m accuracy (89.4%) and lowest 90th percentile error
(1.987 m) among all variants, demonstrating the benefit of smooth weight transitions. The
close performance between Multi-Stage and AMSHL in terms of median error suggests
that the cascaded refinement architecture contributes more significantly to accuracy than
the adaptive weighting mechanism under the simulated favorable conditions. However,
the subtle differences in other metrics reveal the distinct characteristics of each approach.

The comparison between AMSHL and Multi-Stage illuminates the trade-offs inherent
in adaptive fusion strategies. AMSHL achieves a slightly higher sub-1m success rate (63.5%
vs. 61.5%) and lower 90th percentile error (2.111 m vs. 2.156 m), indicating improved ro-
bustness in challenging scenarios where condition-aware weighting shifts reliance toward
fingerprinting. Conversely, Multi-Stage achieves a higher sub-2m success rate (89.4% vs.
87.5%), lower mean error (1.028 m vs. 1.284 m), and superior MSE/RMSE performance
(1.685 m2/1.298 m vs. 2.378 m2/1.542 m), suggesting that the non-adaptive approach
performs better in typical scenarios where geometric refinement can proceed without
conservative weighting. This trade-off reflects a fundamental design choice: AMSHL prior-
itizes worst-case robustness by potentially underweighting geometric information when
conditions appear unfavorable, while Multi-Stage maximizes average-case performance
by fully exploiting geometric refinement regardless of condition assessment. The higher
MSE exhibited by AMSHL reflects the quadratic penalty on occasional larger errors that
arise when the adaptive mechanism conservatively limits geometric refinement; however,
these same conservative decisions yield AMSHL’s improved tail performance as captured
by the 90th percentile metric. The appropriate choice depends on application requirements
regarding reliability guarantees versus typical accuracy.

Figure 3 presents the cumulative distribution function (CDF) of localization error, pro-
viding comprehensive insight into the complete error distribution that summary statistics
cannot fully capture. The CDF representation enables direct reading of success probabilities
at any error threshold and reveals distributional characteristics including modality, spread,
and tail behavior that inform system design and performance guarantees.
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Figure 3. Cumulative distribution function (CDF) of localization error comparing baseline methods
(B1–B3) and proposed algorithms (P1–P3). The vertical red dashed line indicates the 2 m target accu-
racy threshold. The proposed AMSHL achieves 87.5% probability of sub-2m accuracy, representing a
4.9× improvement over Hybrid-WKNN (30.8%).

The CDF curves exhibit distinct characteristics that reflect the underlying algorithmic
properties of each method. TDoA-LM displays the steepest CDF slope with a sharp transi-
tion near 0.5 m, indicating highly concentrated error distribution with minimal variance.
The near-vertical rise achieves 98.1% probability below 1 m and reaches 100% well before
the 2 m threshold, demonstrating the consistency of geometric localization under favorable
conditions. This tight distribution arises from the mathematical nature of TDoA multilat-
eration, where small ranging errors produce proportionally small position errors when
anchor geometry is favorable. The absence of a heavy tail confirms that TDoA-LM does
not experience catastrophic failures under the simulated conditions, though this favorable
behavior depends critically on the assumption of unbiased ranging measurements.

RSSI-WKNN exhibits a gradual CDF rise that extends beyond 15 m, indicating high
variability and poor reliability across the service area. The shallow slope reflects the
wide spread of positioning errors, with substantial probability mass distributed across
the entire error range. The CDF reaches only 9.6% at the 3 m threshold, meaning more
than 90% of estimates exceed this relatively generous accuracy target. This behavior is
characteristic of fingerprinting failure in environments where features lack sufficient spatial
distinctiveness, as the algorithm cannot reliably discriminate between database points
with similar signatures. The long tail extending to errors approaching room dimensions
indicates that fingerprinting occasionally matches to entirely incorrect regions of the space.

Hybrid-WKNN improves substantially over RSSI-WKNN, achieving a steeper CDF
rise that reaches 47.1% at 3 m. The incorporation of TDoA features shifts the error distribu-
tion toward lower values, though the improvement is insufficient for precision positioning
applications. The CDF shape reveals a bimodal character with a faster initial rise fol-
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lowed by a slower asymptotic approach, suggesting that hybrid fingerprinting succeeds
for a subset of favorable locations while struggling in regions with ambiguous features or
unfavorable geometry.

The proposed methods (Robust IRLS, Multi-Stage, AMSHL) display CDF curves that
occupy the intermediate region between pure TDoA and fingerprinting baselines, demon-
strating the successful combination of both paradigms. AMSHL achieves 87.5% probability
at the 2 m target threshold, meeting practical requirements for indoor positioning applica-
tions including asset tracking, warehouse navigation, and location-based services. The CDF
slope for AMSHL is steeper than Robust IRLS but shallower than TDoA-LM, reflecting the
trade-off between robustness and peak accuracy inherent in hybrid approaches. The clear
separation between proposed method curves and baseline fingerprinting curves confirms
that geometric refinement with robust estimation provides substantial value beyond what
feature enhancement alone can achieve.

Figure 4 presents bar chart comparisons of error statistics and success rates across all
algorithms, providing a clear visualization of the performance hierarchy and facilitating
a direct comparison of key metrics. The dual-panel format enables the simultaneous
assessment of typical performance (median error) and reliability (sub-2m success rate),
both of which are critical for practical system deployment.

Figure 4. Algorithm comparison showing (left) error statistics with median and 90th percentile bars,
and (right) sub-2m accuracy success rate. Red dashed lines indicate 2 m target threshold and 90%
success rate target. The proposed AMSHL achieves optimal balance of low median error and high
success rate among hybrid methods.

The left panel reveals the dramatic performance differences across algorithm categories.
TDoA-LM achieves the lowest median and 90th percentile errors, with both metrics falling
well below the 2 m threshold. The small gap between the median and 90th percentile for
TDoA-LM indicates consistent performance without significant outliers. The proposed
hybrid methods occupy the middle tier, with median errors below 1.5 m and 90th percentile
errors near the 2 m threshold. The progressive improvement from Robust IRLS through
Multi-Stage to AMSHL (in terms of the 90th percentile) demonstrates the cumulative value
of multi-stage refinement and adaptive fusion. Baseline fingerprinting methods exhibit
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median errors exceeding 3 m and 90th percentile errors exceeding 6 m, which are clearly
unsuitable for precision localization applications.

The right panel displays sub-2m accuracy success rates, where the 90% target is
indicated by a horizontal dashed line. TDoA-LM achieves a perfect 100% success rate,
while the proposed hybrid methods approach but do not quite reach the 90% target. Multi-
Stage achieves 89.4%, falling just short of the target, while AMSHL reaches 87.5%. The 2%
gap between these methods reflects the conservative nature of adaptive weighting, which
occasionally reduces reliance on geometric information even when such information would
improve accuracy. Baseline fingerprinting methods achieve success rates below 50%, with
RSSI-WKNN reaching only 2.9%, demonstrating the inadequacy of fingerprinting alone for
precision positioning in large indoor spaces.

Table 5 quantifies the improvement of AMSHL over baseline methods, providing con-
crete metrics for assessing the contribution of the proposed framework. The 91.5% median
error reduction compared to RSSI-WKNN (corresponding to an 11.7× improvement factor)
demonstrates that hybrid multi-stage approaches fundamentally transform positioning
capability beyond what fingerprinting alone can achieve. The 84.6% gain in sub-2m success
rate (from 2.9% to 87.5%) represents the difference between a system that rarely meets
application requirements and one that reliably provides usable positioning information.

Table 5. Relative change in proposed AMSHL with respect to baseline methods.

Comparison Median Error Relative Success Rate
Change Factor Change

vs. RSSI-WKNN [30] 91.5% 11.7× +84.6%
vs. Hybrid-WKNN [30] 79.4% 4.9× +56.7%
vs. TDoA-LM [47] +99.1% 2.0× −12.5%

The comparison against Hybrid-WKNN is particularly significant as it isolates the
contribution of geometric refinement from feature enhancement. The 79.4% median error
reduction (4.9× improvement) demonstrates that multi-stage processing with robust opti-
mization provides substantial value beyond simply combining RSSI and TDoA features in
the fingerprint database. The 56.7% success rate gain (from 30.8% to 87.5%) nearly triples
the fraction of estimates meeting the 2 m accuracy requirement. These improvements
justify the additional computational complexity of iterative geometric optimization, which
remains tractable for real-time implementation as demonstrated in subsequent analysis.

The comparison against TDoA-LM reveals the cost of robustness in hybrid approaches.
AMSHL exhibits a 98.8% higher median error (0.661 m vs. 0.332 m) and 12.5% lower
sub-2m success rate (87.5% vs. 100%) compared to pure geometric localization. However,
this comparison assumes favorable conditions that may not hold in practical deployments.
The robustness benefits of AMSHL manifest under degraded conditions with NLOS prop-
agation, multipath interference, or poor anchor geometry, where pure TDoA methods
would experience more severe degradation than the hybrid approach. The SNR sensitivity
analysis presented subsequently provides evidence for this robustness advantage.

5.3. Spatial and Statistical Analysis

The aggregate performance metrics presented above characterize system-wide be-
havior but do not reveal spatial patterns that are critical for understanding localization
reliability across the coverage area. This subsection examines the spatial distribution of
errors and statistical characteristics that inform deployment planning and identify potential
problem regions requiring additional infrastructure or algorithmic attention.
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Figure 5 visualizes the spatial distribution of localization error across the coverage
area, comparing the proposed AMSHL against the Hybrid-WKNN baseline using color-
coded heatmaps. The visualization employs a consistent color scale (0–3 m) to enable direct
comparison between methods, with cooler colors indicating lower errors and warmer colors
indicating higher errors. RIS panel positions are marked with yellow squares, and the gNB
location is indicated by a red star, providing context for interpreting spatial patterns in
relation to system geometry.

Figure 5. Spatial distribution of localization error comparing the proposed AMSHL (left) and
baseline Hybrid-WKNN (right). Color indicates error magnitude in meters (scale 0–3 m). Yellow
squares denote RIS panel positions; red star indicates gNB location. AMSHL achieves uniformly
lower errors throughout the coverage area. For consistent side-by-side comparison, the colormap
is fixed to 0–3 m and saturates at 3 m (i.e., errors > 3 m are clipped to the maximum color). The
corresponding maximum/upper-percentile error values (including corner-region degradation) are
reported numerically in Table 4; see also the related discussion in Section 5.

The spatial analysis reveals striking differences between AMSHL and Hybrid-WKNN
that illuminate the mechanisms underlying their performance gap. AMSHL achieves
substantially lower and more uniform errors throughout the localization area, with the
majority of locations displaying cool colors indicating sub-2m errors. The error distribution
exhibits mild spatial variation with slightly elevated values near room corners, but without
the severe degradation observed in baseline methods. This spatial uniformity is a direct
consequence of the adaptive fusion mechanism, which adjusts algorithm weights based on
local geometric conditions to maintain consistent performance across the coverage area.

Hybrid-WKNN exhibits a pronounced spatial pattern with elevated errors particularly
at room boundaries and corners. These regions correspond to locations where fingerprint
ambiguity is highest due to similar distances to multiple RIS panels and where geometric
conditions are least favorable due to poor angular diversity. The corners of the room
represent the most challenging locations, where GDOP is elevated and fingerprint features
from distant RIS panels provide weak discrimination. The heatmap shows errors exceeding
3 m (saturating the color scale) at multiple boundary locations, indicating that Hybrid-
WKNN frequently fails to provide usable positioning information in these regions.

The contrast between methods demonstrates the effectiveness of condition-aware
adaptation. In central regions with favorable geometry, both methods achieve relatively
low errors, with AMSHL providing incremental improvement through geometric refine-
ment. At boundary regions where GDOP increases, AMSHL’s adaptive mechanism shifts
reliance toward fingerprinting, accepting the coarser accuracy of pattern matching rather
than propagating unreliable geometric estimates. This intelligent adaptation prevents the
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catastrophic failures that afflict methods relying too heavily on geometric information
under unfavorable conditions.

The spatial patterns also reveal the geometric characteristics of the 4-RIS architecture.
Regions equidistant from pairs of opposing RIS panels (along the horizontal and verti-
cal centerlines) exhibit lower errors due to favorable GDOP, while corner regions suffer
from reduced angular diversity. The gNB position near (2, 2) introduces asymmetry that
slightly improves geometry in the lower-left quadrant compared to other corners. These
observations inform RIS placement optimization for future deployments, suggesting that
additional panels at corner positions could further improve coverage uniformity.

Figure 6 presents box plots comparing error distributions across all algorithms, reveal-
ing statistical characteristics including central tendency, dispersion, and outlier behavior
that complement the CDF analysis. The box plot format displays the median (central
line), interquartile range (box extent from 25th to 75th percentile), typical range (whiskers
extending to 1.5× IQR), and outliers (individual markers beyond whiskers). The horizontal
dashed line at 2 m provides a reference for assessing what fraction of each distribution
meets the target accuracy requirement.

Figure 6. Box plot comparison of localization error distributions. Boxes indicate interquartile range
(IQR), whiskers extend to 1.5 × IQR, and crosses mark outliers. Red dashed line indicates 2 m target
threshold. AMSHL demonstrates compact IQR below 2 m with few outliers.

TDoA-LM exhibits the tightest distribution with minimal spread and no outliers,
confirming the highly consistent accuracy observed in the CDF analysis. The entire box
and whiskers fall well below the 2 m threshold, with the median near 0.35 m match-
ing the tabulated results. The absence of outliers reflects the reliable convergence of
Levenberg–Marquardt optimization under favorable geometric conditions, where the itera-
tive refinement consistently approaches the global optimum without becoming trapped in
local minima.

AMSHL displays a compact IQR positioned below the 2 m threshold, with the median
near 0.66 m and the 75th percentile below 1.5 m. The box location confirms that the majority
of estimates (at least 50%) achieve sub-meter accuracy, while the upper whisker extending
near 3 m indicates that typical worst-case errors remain bounded. A moderate number of

https://doi.org/10.3390/s26041084

https://doi.org/10.3390/s26041084


Sensors 2026, 26, 1084 33 of 47

outliers appear above the whiskers, representing challenging locations where the adaptive
mechanism cannot fully compensate for degraded conditions. These outliers correspond to
the tail of the CDF extending beyond the 90th percentile, contributing to the mean error
(1.284 m) being substantially higher than the median (0.661 m).

Multi-Stage shows similar box characteristics to AMSHL with slightly different outlier
behavior, reflecting the trade-off between approaches. Robust IRLS exhibits a higher
median and wider IQR, with the 75th percentile approaching the 2 m threshold. The greater
dispersion indicates less consistent performance compared to the multi-stage approaches,
though still substantially improved over baseline fingerprinting.

RSSI-WKNN and Hybrid-WKNN exhibit wide distributions with boxes extending
well above the 2 m threshold and numerous outliers spanning a large error range. For RSSI-
WKNN, even the median exceeds the target threshold, confirming that typical performance
is inadequate for precision positioning. The extensive outlier populations indicate frequent
large errors that would be unacceptable in practical applications. The dramatic visual
contrast between baseline fingerprinting and proposed hybrid methods underscores the
fundamental performance improvement achieved through multi-stage processing with
geometric refinement.

5.4. Robustness and Convergence Analysis

System robustness under varying operating conditions is critical for practical deploy-
ment, as real-world environments exhibit temporal and spatial variations in channel quality,
interference levels, and geometric configurations. This subsection analyzes the sensitivity
of proposed methods to key condition parameters and characterizes the computational
efficiency through convergence behavior assessment.

Figure 7 examines the relationship between geometric conditions, quantified by ge-
ometric dilution of precision (GDOP), and localization error for the proposed AMSHL.
GDOP measures the amplification factor from ranging errors to position errors based on
anchor geometry, with lower values indicating favorable configurations where ranging
uncertainty produces minimal position uncertainty. In pure geometric methods, GDOP
strongly predicts localization error, as the geometric amplification directly scales ranging
noise into position estimates. A key design objective for AMSHL is to decouple this re-
lationship through adaptive fusion that reduces reliance on geometric information when
GDOP indicates unfavorable conditions.

The scatter plot displays localization error versus GDOP for all test points, with
each marker representing one Monte Carlo trial. A linear regression fit is overlaid to
quantify the correlation, with the resulting coefficient r = −0.045 indicating essentially
no linear relationship between GDOP and error. This weak correlation is remarkable and
demonstrates the successful operation of the adaptive fusion mechanism. In pure TDoA
methods, we would expect a strong positive correlation where higher GDOP produces
proportionally higher errors. The near-zero (slightly negative) correlation observed for
AMSHL indicates that the adaptive mechanism effectively compensates for geometric
degradation by shifting toward fingerprinting when GDOP is elevated.

The scatter plot also reveals the range of GDOP values encountered across the coverage
area, spanning approximately 1.0 to 1.25. This relatively narrow range reflects the favorable
geometry provided by the 4-RIS architecture with panels on opposite walls. The low
absolute GDOP values (all below 1.5) indicate that the simulated configuration provides
good geometric diversity throughout the service area, which contributes to the strong
TDoA-LM performance observed in baseline comparisons. In environments with less
favorable RIS placement or fewer panels, GDOP variation would be larger and the adaptive
fusion mechanism would provide greater relative benefit.
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Figure 7. GDOP versus localization error for the proposed AMSHL. The weak correlation (r = −0.045)
indicates successful decoupling of accuracy from geometric conditions through adaptive fusion,
unlike pure geometric methods where GDOP strongly predicts error.

The decoupling of accuracy from geometric conditions represents a significant practical
advantage for deployment flexibility. System designers need not optimize RIS placement
solely for geometric considerations, as the adaptive algorithm compensates for suboptimal
configurations. This flexibility enables placement decisions based on practical constraints
including mounting locations, cable routing, and aesthetic requirements, without sacrificing
positioning reliability.

Figure 8 illustrates the convergence behavior of iterative algorithms, displaying mean
localization error versus iteration number to characterize computational efficiency and so-
lution quality. Convergence speed directly impacts real-time implementation feasibility, as
faster convergence enables position updates at higher rates or with reduced computational
resources. The asymptotic error level indicates the ultimate accuracy achievable given the
algorithmic formulation and initialization quality.

AMSHL achieves the fastest convergence among compared methods, reaching near-
optimal performance within 10 iterations. The rapid initial error reduction from approxi-
mately 2.8 m at iteration 1 to below 1.5 m by iteration 5 demonstrates the effectiveness of
the warm-start initialization from fingerprinting. By providing a coarse position estimate
within the correct region of the solution space, fingerprinting initialization enables the
geometric optimization to focus on local refinement rather than global search, dramati-
cally accelerating convergence. The error curve flattens after iteration 10, indicating that
additional iterations provide diminishing returns and that early termination criteria could
reduce computation without sacrificing accuracy.

Multi-Stage exhibits similar convergence characteristics to AMSHL, with slightly dif-
ferent trajectory reflecting the absence of adaptive weighting adjustments during iteration.
Robust IRLS converges more slowly and to a higher asymptotic value (approximately
1.5 m) due to stronger regularization toward the fingerprinting prior. The regularization
term penalizes deviation from the fingerprint estimate, which prevents the geometric

https://doi.org/10.3390/s26041084

https://doi.org/10.3390/s26041084


Sensors 2026, 26, 1084 35 of 47

solution from fully exploiting ranging measurements even when they are accurate. This
conservative behavior improves robustness but limits peak accuracy, representing a design
trade-off addressed by the adaptive mechanism in AMSHL.

Figure 8. Convergence behavior of iterative localization algorithms showing mean error versus
iteration number. AMSHL achieves fastest convergence and lowest asymptotic error, reaching
near-optimal performance within 10 iterations.

All methods satisfy the convergence tolerance (ϵconv = 10−4) well within the maxi-
mum iteration limit (Imax = 30), confirming that the iterative formulations reliably termi-
nate without requiring the full iteration budget. The convergence tolerance specifies the
minimum position update magnitude for continued iteration, with smaller values ensuring
tighter convergence at the cost of additional iterations. The chosen tolerance provides suffi-
cient precision for the target accuracy levels while maintaining computational efficiency.

Figure 9 evaluates algorithm robustness across varying SNR conditions from 10 dB to
40 dB, simulating the range of channel quality encountered in practical deployments. SNR
directly affects ranging accuracy through the relationship σd ∝ 1/

√
SNR, with lower SNR

producing larger timing estimation errors that degrade geometric localization. The ability
to maintain acceptable performance under degraded SNR conditions is critical for reliable
operation in challenging environments with signal blockage, interference, or extended
propagation distances.

The analysis compares AMSHL against Hybrid-WKNN to isolate the contribution
of adaptive fusion and geometric refinement from fingerprinting capability. AMSHL
maintains sub-2m median error across the majority of the SNR range (10–40 dB), demon-
strating robust performance under channel quality degradation. At low SNR (10 dB),
the median error approaches but remains below the 2 m threshold, indicating that the
adaptive mechanism successfully shifts reliance toward fingerprinting when ranging mea-
surements become unreliable. The error increases smoothly as SNR decreases, without
abrupt degradation that would indicate algorithmic failure.
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Figure 9. SNR sensitivity analysis comparing median localization error of AMSHL versus Hybrid-
WKNN across SNR values from 10 to 40 dB. Red dashed line indicates 2 m target threshold. AMSHL
maintains sub-2m median error across most SNR conditions while Hybrid-WKNN consistently
exceeds the target.

Hybrid-WKNN exhibits substantially higher errors across all SNR conditions, with
median errors exceeding 3 m throughout the tested range. The relative insensitivity of
Hybrid-WKNN to SNR reflects the fact that fingerprinting accuracy depends primarily on
database quality and feature distinctiveness rather than instantaneous channel conditions.
However, this insensitivity operates at an unacceptably high baseline error level, confirming
that fingerprinting alone cannot meet precision positioning requirements regardless of
SNR conditions.

The performance gap between AMSHL and Hybrid-WKNN narrows at high SNR (40
dB), where both approaches benefit from improved measurement quality. At this operating
point, AMSHL achieves approximately 0.5 m median error while Hybrid-WKNN reaches
approximately 2.8 m, representing a 5.6× improvement factor. The persistent gap even at
high SNR demonstrates that geometric refinement provides value beyond simply reducing
ranging noise, as the iterative optimization interpolates between discrete fingerprint grid
points to achieve sub-grid accuracy.

AMSHL exhibits some performance variation at intermediate SNR (15–35 dB)due
to discrete threshold crossings in the rule-based fusion. AMSHL-S substantially reduces
these variations through continuous sigmoid-based fusion, as confirmed by the smoother
monotonic behavior in Table 9. Future work on learned weighting functions could further
improve condition assessment accuracy.

5.4.1. Clock Synchronization Sensitivity

Figure 10 evaluates AMSHL performance under clock imperfections.
The results confirm that TDoA processing effectively cancels common clock offset:

the median error varies by less than 2% across the tested offset range (±1 µs). Clock drift
introduces modest degradation at extreme values (20 ppm yields an 8.3% error increase),
but AMSHL maintains sub-meter accuracy for drift rates typical of TCXO-grade oscillators
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(<5 ppm). The adaptive fusion mechanism provides additional robustness by detecting
drift-induced TDoA inconsistencies through residual analysis and appropriately increasing
fingerprinting weight.

Figure 10. Impact of clock imperfections on AMSHL localization accuracy. (a) Clock offset sensitivity
showing TDoA-based cancellation of common-mode bias. (b) Clock drift sensitivity across TDM
frame duration.

5.4.2. NLOS Mitigation Evaluation

In Table 6, we evaluate NLOS detection under controlled NLOS injection: for each test
point, one randomly selected RIS link is corrupted with additive NLOS bias bNLOS∼Exp(µb)

with µb ∈ {2, 5, 10}m.

Table 6. NLOS detection and mitigation performance.

NLOS Bias Detection False Alarm Median Error (m)
µb (m) Rate (%) Rate (%) No Mitigation With NLOS Det. Improvement

0 (clean) – 4.2 0.661 0.674 −2.0%
2 67.3 5.1 0.892 0.756 15.2%
5 89.2 4.8 1.423 0.834 41.4%
10 96.7 5.3 2.567 0.923 64.0%

The residual-based NLOS detector achieves an 89–97% detection rate for moderate-to-
severe NLOS bias (µb ≥ 5 m) while maintaining a low false alarm rate (∼5%). Under severe
NLOS conditions (µb = 10 m), NLOS detection reduces the median error by 64%, from
2.567 m to 0.923 m, demonstrating effective bias compensation. The slight performance
degradation under clean conditions (−2%) reflects the cost of occasional false alarms,
representing an acceptable trade-off for NLOS robustness.

5.5. Channel Model Sensitivity

Table 7 compares AMSHL performance across channel models to assess sensitivity to
propagation assumptions.

Under the more realistic 3GPP InH-Mixed model (probabilistic LOS/NLOS), AMSHL
exhibits a 35% higher median error compared to the Rayleigh baseline, reflecting the in-
creased challenge of multipath and shadowing. Critically, AMSHL’s relative advantage
over Hybrid-WKNN is preserved (4.0× improvement under InH-Mixed vs. 4.9× under
Rayleigh), confirming that the algorithmic gains generalize to realistic propagation condi-
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tions. The adaptive fusion mechanism provides particular value under mixed LOS/NLOS
conditions by detecting degraded SNR and appropriately increasing fingerprinting weight.

Table 7. Performance under different channel models.

Channel Model Median (m) RMSE (m) P (<2 m) (%) vs. Baseline

Model A: Rayleigh (baseline) 0.661 1.542 87.5 –
Model B: 3GPP InH-LOS 0.734 1.687 84.2 +11.0%
Model B: 3GPP InH-Mixed 0.892 2.012 78.8 +35.0%
Model C: Cluster-Based 0.812 1.834 81.7 +22.8%

Comparison: Hybrid-WKNN under same conditions
Model A: Rayleigh 3.213 4.102 30.8 –
Model B: 3GPP InH-Mixed 3.567 4.534 26.4 +11.0%

5.6. Hardware Impairment Sensitivity Analysis

Table 8 evaluates AMSHL robustness to practical hardware non-idealities compared
to baseline methods.

Table 8. Impact of hardware impairments on localization accuracy (median error in meters).

Impairment Setting TDoA-LM Hybrid-WKNN AMSHL Degradation

Phase Quant.

∞ bits 0.332 3.213 0.661 –
3 bits 0.348 3.245 0.678 2.6%
2 bits 0.412 3.298 0.724 9.5%
1 bit 0.687 3.456 0.891 34.8%

Amp-Phase (β0)
0.0 0.332 3.213 0.661 –

0.15 0.356 3.267 0.689 4.2%
0.30 0.398 3.342 0.738 11.6%

Pixel Fail (p f )
0% 0.332 3.213 0.661 –
5% 0.367 3.289 0.698 5.6%

10% 0.423 3.378 0.756 14.4%

Calib. Error (σc)
0 cm 0.332 3.213 0.661 –
5 cm 0.389 3.234 0.712 7.7%
10 cm 0.478 3.267 0.798 20.7%

The results demonstrate that AMSHL maintains sub-meter median accuracy across all
tested impairment levels, with graceful degradation under practical non-idealities. Notably,
AMSHL’s adaptive fusion provides additional robustness: when hardware impairments
degrade TDoA quality, the condition assessment automatically increases fingerprinting
weight, partially compensating for geometric estimation errors. The relative improvement
of AMSHL over Hybrid-WKNN is preserved (4.5–4.9×) across all impairment conditions,
confirming that the algorithmic gains are robust to hardware non-idealities.

5.7. Rule-Based vs. Continuous Fusion

Table 9 compares the rule-based AMSHL with the sigmoid-based AMSHL-S imple-
mentation.

Table 9. Comparison of fusion weight strategies: rule-based (AMSHL) vs. sigmoid (AMSHL-S).

Fusion Strategy Median (m) Mean (m) 90th % (m) P (<2 m) (%)

AMSHL (rule-based) 0.661 1.284 2.111 87.5
AMSHL-S (sigmoid) 0.647 1.198 1.987 89.4
Improvement −2.1% −6.7% −5.9% +1.9%
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AMSHL-S achieves modest improvements across all metrics compared to the rule-
based AMSHL, with the largest gains in mean error (−6.7%) reflecting reduced sensitivity
to boundary effects. The 90th percentile error decreases below the 2 m threshold (1.987 m
vs. 2.111 m), and the sub-2m success rate improves to 89.4%. The SNR sensitivity curve
exhibits smoother monotonic behavior without the “wobbles” observed in Figure 9 under
rule-based AMSHL weighting, confirming that AMSHL-S eliminates discrete switching
artifacts. We therefore recommend AMSHL-S for deployments where stable weighting is
required under fluctuating channel conditions, while keeping the rule-based AMSHL as
the simple default.

5.8. Generalization Across Room Geometries

Table 10 evaluates AMSHL and baseline methods across the five room configurations
defined in Table 3.

Table 10. Performance across room geometries (median error in meters). AMSHL refers to rule-based
fusion; AMSHL-S achieves 2–5% lower median errors across all configurations.

Configuration Area (m2) TDoA-LM Hybrid-WKNN AMSHL Improvement

A: Baseline (60× 40) 2400 0.332 3.213 0.661 4.9×
B: Square (50× 50) 2500 0.356 3.456 0.698 5.0×
C: Corridor (80× 15) 1200 0.512 2.834 0.823 3.4×
D: L Shape (6 RIS) 2000 0.378 3.678 0.712 5.2×
E: Small (20× 15) 300 0.234 1.867 0.423 4.4×
Average – 0.362 3.010 0.663 4.6×

Key observations from the generalization study:
Corridor environments (Config. C) exhibit the highest AMSHL error (0.823 m)

due to elongated geometry producing elevated GDOP along the corridor axis. However,
AMSHL’s adaptive fusion mitigates this challenge, maintaining a 3.4× improvement over
Hybrid-WKNN by appropriately weighting fingerprinting in high-GDOP regions.

L-shaped environments (Config. D) benefit from additional RIS panels (6 vs. 4)
required to maintain coverage around the obstruction, achieving the highest improvement
factor (5.2×) due to enhanced geometric diversity.

Small environments (Config. E) achieve the lowest absolute error (0.423 m) due to
reduced propagation distances and higher average SNR, demonstrating AMSHL scalability
to retail and office deployments.

The consistent improvement factor (3.4–5.2×, average 4.6×) across diverse geometries
confirms that AMSHL’s algorithmic gains generalize beyond the baseline configuration.

5.9. Overall Discussion Regarding Results

The simulation results provide strong evidence that the proposed AMSHL framework
can deliver accurate and reliable RIS-aided indoor localization by combining complemen-
tary strengths of fingerprinting and geometric processing. The default rule-based AMSHL
achieves a median localization error of 0.661 m with 87.5% probability of sub-2m accuracy,
while the sigmoid variant (AMSHL-S) improves sub-2m accuracy to 89.4% with a 0.647 m
median error. Both variants represent a 4.9× improvement over conventional Hybrid-
WKNN fingerprinting and a substantial gain in reliability over RSSI-only fingerprinting.
These results confirm that multi-stage processing (coarse fingerprint-based initialization
followed by robust geometric refinement) is an effective strategy for achieving sub-meter
accuracy over a large 60× 40 m indoor area with only four RIS panels.
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A notable observation from Table 4 is that AMSHL exhibits a slightly higher mean
error (1.284 m vs. 1.028 m), higher MSE (2.378 m2 vs. 1.685 m2), higher RMSE (1.542 m vs.
1.298 m), and lower sub-2m success rate (87.5% vs. 89.4%) compared to the Multi-Stage
variant, despite incorporating adaptive fusion. This behavior reflects a deliberate design
trade-off: AMSHL prioritizes worst-case robustness over average-case optimality.

The adaptive fusion mechanism in AMSHL applies conservative weighting that shifts
reliance toward fingerprinting when condition metrics (qSNR, qGDOP) indicate potentially
unfavorable geometry or channel quality. While this conservative approach successfully
improves tail performance as evidenced by AMSHL’s superior 90th percentile error (2.111 m
vs. 2.156 m) and higher sub-1m success rate (63.5% vs. 61.5%), it occasionally underweights
geometric information even when TDoA measurements would improve accuracy. The
result is a slight degradation in typical-case performance metrics (mean, MSE, RMSE, sub-
2m rate) in exchange for improved reliability guarantees. The 41% higher MSE exhibited by
AMSHL (2.378 m2 vs. 1.685 m2) reflects the quadratic penalty imposed on occasional larger
errors that arise when the adaptive mechanism conservatively limits geometric refinement;
however, these same conservative decisions yield AMSHL’s improved tail performance,
demonstrating that MSE alone does not fully capture the reliability advantages of condition-
aware fusion.

This trade-off is particularly relevant for application requirements:

• High-reliability applications (e.g., emergency response, safety-critical tracking)
benefit from AMSHL’s reduced worst-case errors and more predictable performance
distribution.

• Average-accuracy applications (e.g., asset tracking, general navigation) may prefer
Multi-Stage’s higher typical accuracy and lower MSE/RMSE when occasional larger
errors are acceptable.

AMSHL vs. AMSHL-S trade-off: The sigmoid-based variant (AMSHL-S) achieves
the highest sub-2m accuracy (89.4%) among all hybrid methods by providing smooth
weight transitions that prevent discrete switching artifacts. However, the rule-based
AMSHL remains the recommended default due to its simplicity, interpretability, and near-
equivalent performance. For deployments with highly variable channel conditions where
weight stability is critical, AMSHL-S offers measurable benefits (Table 9).

Under the favorable 30 dB SNR conditions simulated here, the conservative nature
of AMSHL’s adaptation is more apparent because truly degraded conditions are rare. In
deployments with greater SNR variability, NLOS propagation, or suboptimal RIS placement,
the adaptive mechanism would provide larger relative benefits by preventing the severe
degradation that non-adaptive geometric methods would experience. The SNR sensitivity
analysis in Figure 9 provides initial evidence for this robustness advantage, showing that
AMSHL maintains sub-2m median accuracy across a wider operating range than would be
achieved by static fusion weights.

Future work could refine the adaptation policy through machine learning approaches
that learn optimal fusion weights from data, potentially capturing more nuanced condition–
accuracy relationships than the rule-based thresholds employed here.

A key insight is that the multi-stage architecture is the primary driver of the accuracy
gains under the favorable simulated conditions, while adaptive fusion mainly improves
robustness at the distribution tail. This is reflected in the close median errors of Multi-
Stage (0.660 m) and AMSHL (0.661 m), contrasted with AMSHL’s slightly improved 90th
percentile error (2.111 m vs. 2.156 m) and higher sub-1m success rate (63.5% vs. 61.5%); the
divergence in MSE (1.685 m2 vs. 2.378 m2) and RMSE (1.298 m vs. 1.542 m) further confirms
that Multi-Stage achieves better average-case performance while AMSHL’s conservative
adaptation incurs a quadratic penalty that is offset by improved worst-case behavior.
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Among the AMSHL variants, AMSHL-S achieves the best overall balance with a 0.647 m
median error, 89.4% sub-2m accuracy, and 1.987 m 90th percentile error. In practice, these
tail improvements are important because occasional large errors can be more damaging
than small changes in typical accuracy, and the MSE metric, which emphasizes larger
errors through squaring, may actually overstate the practical disadvantage of AMSHL’s
conservative strategy when reliability is paramount. The CDF and box-plot analyses further
indicate that AMSHL yields a compact error distribution with relatively few extreme
outliers compared to fingerprinting baselines, supporting its suitability for applications
requiring dependable indoor positioning.

The spatial heatmap analysis underscores the practical value of condition-aware
adaptation. While Hybrid-WKNN exhibits pronounced degradation near boundaries
and corners (where feature ambiguity and geometric conditioning are less favorable),
AMSHL maintains more uniform accuracy over the service region by moderating reliance
on geometric refinement when conditions degrade. This behavior is consistent with the
observed weak correlation between GDOP and localization error (r = −0.045), indicating
that AMSHL successfully reduces sensitivity to unfavorable anchor geometry through
condition-aware fusion. Such decoupling improves deployment flexibility, since RIS place-
ment can be influenced by practical constraints (mounting feasibility, cabling, aesthetics)
without disproportionately compromising localization performance.

Robustness and efficiency results further support deployment feasibility. The SNR
sensitivity study shows that AMSHL maintains sub-2m median accuracy over a wide
operating range (10–40 dB), exhibiting graceful degradation rather than abrupt failure at
low SNR. Moreover, convergence analysis demonstrates that AMSHL reaches near-optimal
performance within≈10 iterations, enabled by warm-start initialization from fingerprinting.
Combined with the overall complexity O(NfpK + ImaxK2), these results indicate that real-
time implementation on embedded platforms is realistic for moderate database sizes and a
small number of RIS panels.

Comparisons with theoretical and pure geometric references highlight an important
trade-off. Although the CRLB indicates a much lower theoretical variance floor, with
an MSE of 0.00006 m2 compared to 2.378 m2 for AMSHL, yielding an efficiency ratio
of approximately 40,000, it assumes idealized conditions (unbiased measurements and
perfect statistical knowledge) that rarely hold indoors. Even the pure TDoA-LM baseline,
which achieves the best empirical performance under our favorable simulation conditions,
exhibits an MSE of 0.148 m2, which is roughly 2,500 times the CRLB, underscoring the
gap between theoretical bounds and practical algorithm performance. Relative to pure
TDoA-LM, AMSHL sacrifices peak accuracy under favorable conditions (0.661 m vs. 0.332
m median; 2.378 m2 vs. 0.148 m2 MSE) in exchange for improved resilience to the kinds of
impairments expected in practice (e.g., NLOS bias, measurement outliers, and degraded
SNR), where purely geometric methods typically degrade more severely. This robustness-
oriented design is aligned with realistic indoor deployments where reliability guarantees
are often prioritized over best-case accuracy.

6. Conclusions and Future Work
This paper presented the adaptive multi-stage hybrid localization (AMSHL) frame-

work for RIS-aided indoor positioning systems. The proposed approach strategically
combines fingerprinting-based and geometric TDoA methods through condition-aware
adaptive fusion, achieving robust high-precision localization under varying channel and
geometric conditions. The key contributions include the 4-RIS cooperative architecture
providing comprehensive spatial coverage, the hybrid fingerprint database with enhanced
location distinctiveness, the multi-stage cascaded refinement process, the adaptive fusion
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mechanism responding to real-time SNR and GDOP assessment (with both rule-based
AMSHL and optional sigmoid-based AMSHL-S instantiations), and the robust IRLS solver
with Bayesian regularization for outlier mitigation. Comprehensive Monte Carlo simu-
lations demonstrated that AMSHL achieves a 0.661 m median localization error, 1.542 m
RMSE, and 2.378 m2 MSE, with 87.5% probability of sub-2m accuracy, representing a 4.9×
improvement over conventional hybrid fingerprinting (which exhibits a 4.102 m RMSE
and 16.83 m2 MSE) while maintaining computational efficiency suitable for real-time im-
plementation. The optional sigmoid-based variant (AMSHL-S) further improves sub-2m
accuracy to 89.4% by eliminating discrete weight switching, offering an enhanced option
for deployments with highly variable channel conditions.

The Multi-Stage variant achieves the lowest MSE (1.685 m2) and RMSE (1.298 m)
among hybrid methods, while AMSHL trades slightly higher quadratic-loss metrics for
improved tail performance as reflected in its superior 90th percentile error (2.111 m vs.
2.156 m). Among the AMSHL variants, AMSHL-S achieves the best overall balance, with
a 0.647 m median error, 89.4% sub-2m accuracy, and 1.987 m 90th percentile error. The
adaptive fusion mechanism successfully decouples positioning accuracy from geometric
conditions, providing consistent performance throughout the coverage area.

Future work will address three deployment-critical aspects that are not captured by
the present Monte Carlo study. First, the simplified channel assumptions adopted here (e.g.,
idealized propagation and abstracted effective fading) will be replaced by richer indoor
channel models and measurement-driven parameterization to reflect real-world effects
such as dense multipath, dynamic blockage, material-dependent attenuation, and non-
stationary environments. Second, we will perform experimental validation using physical
RIS hardware prototypes to quantify the impact of practical impairments—including phase-
quantization and amplitude–phase coupling, hardware-induced noise/distortion, element
non-idealities, and calibration drift—and to validate the simulation-to-real performance
gap. Third, the current evaluation assumes perfect synchronization; a deployment-grade
extension will explicitly model gNB/UE clock imperfections (offset and drift across the
RIS TDM cycle) and incorporate calibration and bias-aware robust estimation so that
ToA/TDoA extraction remains reliable under realistic timing errors. Future work will also
explore data-driven fusion policies using lightweight learned regressors trained offline on
simulated and measured datasets, building upon the AMSHL-S sigmoid weighting frame-
work to further improve robustness across diverse operating conditions while preserving
the modular timing/power-driven architecture.

In parallel, the framework will be expanded toward 3D localization and dynamic track-
ing under mobility, where temporal filtering (e.g., Kalman/particle filters) and trajectory-
aware fusion can improve robustness and the continuity of position estimates. On the
algorithmic side, machine learning integration will be pursued to enhance adaptive per-
formance beyond rule-based decisions: deep models can learn condition assessment by
mapping signal-quality indicators (e.g., received power/SNR) and geometric reliability
measures (e.g., GDOP-like metrics) to confidence scores, while also learning to optimize
fusion weights and hybrid fingerprints in a data-driven manner; continual/online learning
can further reduce recalibration needs as environments evolve. Finally, the RIS itself can
be incorporated more tightly into the localization loop via joint RIS phase and positioning
optimization (e.g., optimization- or RL-based phase control) to maximize positioning infor-
mation subject to configuration overhead and imperfect CSI, while multi-user extensions
(requiring scheduling, phase-pattern multiplexing, and resource allocation for shared RIS
access) and long-term fingerprint database maintenance strategies (adaptive updating,
crowdsourcing) are recognized as important deployment considerations that lie beyond
the single-user algorithmic scope established in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

AMSHL Adaptive Multi-Stage Hybrid Localization
AMSHL-S AMSHL with Sigmoid-based fusion
AoA Angle-of-Arrival
AWGN Additive White Gaussian Noise
CFAR Constant False Alarm Rate
CNNs Convolutional Neural Networks
CRLB Cramér–Rao Lower Bound
CSI Channel State Information
FFT Fast Fourier Transform
FIM Fisher Information Matrix
FSPL Free-Space Path Loss
GDOP Geometric Dilution of Precision
gNB next-generation NodeB
GNSS Global Navigation Satellite System
InH Indoor Hotspot
IQR Interquartile Range
IRLS Iteratively Reweighted Least Squares
LM Levenberg–Marquardt
LOS Line-of-Sight
MIMO Multiple-Input Multiple-Output
MLE Maximum Likelihood Estimation
NLOS Non-Line-of-Sight
ppm parts per million
RL Reinforcement Learning
RIS Reconfigurable Intelligent Surface
RSSI Received Signal Strength Indicator
SLAM Simultaneous Localization and Mapping
SNR Signal-to-Noise Ratio
TCXO Temperature-Compensated Crystal Oscillator
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TDoA Time-Difference-of-Arrival
TDM Time-Division Multiplexed
ToA Time-of-Arrival
UE User Equipment
ULA Uniform Linear Array
WKNN Weighted K-Nearest Neighbors
ZC Zadoff–Chu

Appendix A. Practical Considerations and Limitations
Appendix A.1. Practical Considerations

Practical considerations for real deployments include the following. First, fingerprint
database maintenance is required because the offline radio map can become stale due to
environmental changes (e.g., furniture rearrangement, humidity/temperature variation,
and equipment updates); adaptive or incremental updating methods can extend database
validity between full recalibrations [27]. Second, RIS phase configuration was assumed
ideal in simulation; in practice, configuring the RIS requires CSI acquisition and phase
optimization under hardware constraints (e.g., phase quantization), introducing signaling
and reconfiguration overhead [7]. Third, NLOS mitigation remains critical: while Robust
IRLS reduces sensitivity to outliers, severe NLOS can introduce systematic positive bias
that benefits from explicit NLOS detection and bias-mitigation strategies [34,35]. Fourth,
the path-loss model in (11) employs a free-space exponent (α = 2) as commonly assumed in
the RIS literature for specular reflection paths; practical indoor environments may exhibit
higher exponents (α ∈ [2.5, 4]) and shadow fading that would affect absolute accuracy levels,
though relative algorithm comparisons remain valid since all methods experience identical
channel conditions.. Fifth, our simplified channel abstraction does not explicitly distinguish
RIS near-field and far-field regimes; for the considered panel size and carrier frequency,
the Rayleigh distance is approximately 11 m, implying that 30–50% of UE positions may
lie within the near-field region of at least one RIS panel. The channel model assumes far-
field (plane-wave) propagation, whereas incorporating spherical wavefront models [39,52]
could improve accuracy for near-RIS locations and potentially enable enhanced positioning
through wavefront curvature exploitation. The comparative trends across methods are
expected to remain consistent under the same propagation assumptions, but the absolute
accuracy levels may shift when near-field RIS focusing/beamforming patterns are explicitly
modeled. Finally, the dominant runtime cost typically lies in fingerprint matching; this can
be accelerated via k-d trees or approximate nearest-neighbor search to reduce latency in
embedded settings.

Appendix A.2. Limitations and Future Work

Limitations and future work are as follows. The current evaluation is based on
a simulated environment with simplified channel assumptions; experimental valida-
tion with RIS hardware prototypes and real indoor measurements is necessary to con-
firm robustness under practical impairments. The following remain as future work for
experimental validation:

• Calibration drift over time: Long-term aging and thermal effects.
• Realistic propagation: Full ray-tracing with environment-specific materials.

The framework currently targets static 2D positioning; extending to 3D localization will
require additional vertical diversity (e.g., additional RIS panels and modified geometry),
while dynamic tracking under mobility will benefit from temporal filtering (e.g., Kalman or
particle filters). In addition, results are reported for a single layout and RIS configuration;
broader generalization across different room geometries, materials, blockage patterns, and
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RIS placements should be investigated. Finally, the AMSHL-S sigmoid-based fusion policy
can be further strengthened by machine learning approaches that learn condition assessment
and fusion weights from data, and by tighter integration of joint RIS phase control and
localization (potentially via optimization or reinforcement learning), as well as extensions to
multi-user settings with shared RIS resources and scheduling constraints.
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