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Abstract—The emergence of cell-free networks marks a
transformative shift in wireless communication by eliminating
rigid cell boundaries and addressing the challenges of dense
environments. This study introduces a novel cell-free architecture
that integrates advanced clustering algorithms—Self-Organizing
Maps (SOM), Gaussian Mixture Model (GMM), MeanShift,
DBSCAN, and KMeans—with Belief-Desire-Intention extended
(BDIx) agents for optimized resource allocation. Among the
approaches, SOM demonstrates the highest performance, achiev-
ing superior clustering metrics and significantly improving
network sum rate and energy efficiency, making it ideal for
dense networks. The integration of BDIx agents enhances real-
time decision-making for collaborative load balancing and re-
source distribution. Simulation results validate the framework’s
alignment with 6G goals, offering a scalable, adaptive, and
energy-efficient solution for modern wireless networks and high-
bandwidth urban applications.
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I. INTRODUCTION

The advent of cell-free networks marks a transformative shift
in wireless communication, eliminating traditional cell bound-
aries and addressing challenges such as inter-cell interference
and performance degradation at cell edges [1]. Clustering
techniques such as Self-Organizing Maps (SOM), Gaussian
Mixture Models (GMM), MeanShift, DBSCAN, and KMeans
enable dynamic grouping of User Equipment (UEs) based
on proximity, mobility, and interference, allowing distributed
Access Points (APs) to collaboratively serve users. This
ensures efficient resource allocation, enhanced network adapt-
ability, and minimized interference. Integrating Belief-Desire-
Intention extended (BDIx) agents further enhances decision-
making, optimizing resource allocation, user mobility, and
transmission power in real time [2].

Despite these advances, traditional cellular networks remain
constrained by rigid topologies, static resource allocation,
and inefficient handling of dense and dynamic environments.
Urban areas with high device density often face challenges
such as uneven load distribution, frequent handovers, and cell-
edge performance degradation. The motivation for this work
arises from the pressing need to address these limitations
by developing a flexible, adaptive, and intelligent network
architecture capable of dynamically allocating resources, mit-
igating interference, and meeting the growing demands of
modern wireless traffic [3], [4].

Among the evaluated clustering methods, SOM consistently
demonstrates superior performance, excelling in sum rate
optimization and power conservation by effectively adapting

to dynamic network environments and user conditions. GMM
also achieves competitive results, providing high cluster def-
inition and separation. While MeanShift offers moderate
improvements in bandwidth adaptation, it falls short of SOM
and GMM in overall performance. These findings highlight
the critical role of advanced clustering techniques and BDIx
agents in enhancing the sustainability and efficiency of cell-
free networks, positioning this architecture as a cornerstone
for next-generation wireless communication [5], [4], [6], [7].

The novelty of this approach lies in the integration of ad-
vanced clustering algorithms with BDIx agents within a cell-
free framework, enabling real-time optimization of network
performance and sustainability while addressing key chal-
lenges such as mobility, interference, and energy efficiency.
The primary contributions of this study are as follows:

1) Integration of Clustering Techniques in Cell-Free
Networks: This work utilizes clustering methods such
as SOM, MeanShift, DBSCAN, KMeans, and GMM for
efficient UE grouping.

2) Intelligent Resource Allocation via BDIx Agents:
Real-time, decentralized resource allocation and load
balancing reduce reliance on centralized control, improv-
ing scalability.

3) Enhanced Energy Efficiency and Sustainability: SOM
clustering optimizes AP activation, minimizing power
usage and supporting sustainable 6G goals.

4) Adaptive Load Balancing: Clustering methods and
BDIx agents distribute network load evenly across APs,
ensuring consistent performance in high-traffic scenarios.

5) Alignment with 6G Vision: The proposed framework
aligns with 6G goals of resilience, low latency, and
user-centric network design by integrating distributed
intelligence and advanced clustering techniques.

The rest of this article is arranged as follows: Section
II provides a comprehensive discussion of the related work
and background information that is relevant to our exam-
ination. The proposed system and the problem description
are explained in detail in Section III. Section IV outlines
the comprehensive methodology employed to simulate and
analyze cell-free network environments, focusing on syn-
thetic data generation, clustering techniques, and network
performance optimization. The formation of Access Points
(APs) within clusters and the dynamic role of BDIx agents
are detailed, highlighting their contribution to establishing
an adaptive and efficient cell-free network structure. The
simulation results of the suggested system using different
approaches are presented and analyzed in Section V. Section



VI discusses the results drawn from the research and outlines
potential future directions.

II. RELATED WORK AND BACKGROUND WORK

A. Related Work

The study in [8] explores a learning-based, user-centric clus-
tering approach in cell-free massive MIMO systems with
Non-Orthogonal Multiple Access (NOMA). It addresses chal-
lenges in scalability and connectivity in CF-mMIMO systems
by implementing a user-centric approach where specific ac-
cess points (APs) serve designated users. The authors evaluate
unsupervised machine learning algorithms, such as k-means
and its variations, for clustering, achieving significant im-
provements in spectral efficiency and sum rate. Closed-form
expressions for intra-cluster interference and SINR confirm
enhanced performance, making it a promising approach for
high-density networks.

Similarly, the study in [9] proposes a clustering method
in a cell-free MIMO system with multiple CPUs to re-
duce backhaul signaling requirements. This approach, tailored
for environments where centralized signal processing across
CPUs is impractical, employs the Partial-Minimum Mean
Square Error (P-MMSE) method for scalable precoding. By
optimizing clustering to limit the number of CPUs interacting
with each user, the study minimizes backhaul demands while
maintaining spectral efficiency (SE) comparable to central-
ized methods. Monte Carlo simulations confirm minimal
performance degradation and substantial backhaul signaling
reduction, highlighting its practical applicability in large-scale
deployments.

The paper in [10] introduces a clustered cell-free massive
MIMO (C2F-M-MIMO) architecture that leverages the k-
means clustering algorithm to optimize connectivity between
access points (APs) and mobile stations (MSs). By group-
ing APs and MSs based on large-scale fading parameters,
this method minimizes pilot contamination while adapting
to network dynamics. Numerical results indicate that C2F-
M-MIMO significantly reduces fronthaul requirements and
supports high user densities, showcasing its scalability and
efficiency in modern cell-free massive MIMO systems.

Expanding on these methods, [11] investigates the use of
MeanShift clustering for optimizing AP-user connectivity in
cell-free massive MIMO systems. By clustering APs based on
large-scale fading coefficients, this approach reduces overhead
while maintaining high spectral efficiency. The results demon-
strate its adaptability to varying network conditions, making
it suitable for dynamic and heterogeneous environments.

In [12], a Gaussian Mixture Model (GMM)-based cluster-
ing approach is employed to model the spatial distribution
of users in cell-free massive MIMO networks. This method
facilitates efficient resource allocation and dynamically adapts
to changes in user density, proving particularly effective in
high-mobility scenarios. The study achieves significant gains
in spectral efficiency and user connectivity, highlighting its
relevance in evolving wireless communication systems.

The work in [13] applies the DBSCAN algorithm for
dynamic cooperation cluster formation in cell-free massive
MIMO systems. By identifying dense regions of users and
APs, DBSCAN reduces interference and optimizes power
allocation. The results illustrate enhanced scalability and

consistent performance even in high-density environments,
emphasizing its potential for large-scale deployments.

Finally, [14] integrates a hierarchical deep reinforcement
learning framework with Deep Embedded Clustering to im-
prove energy efficiency in cell-free massive MIMO systems.
This method combines clustering with power allocation strate-
gies, striking a balance between performance and sustain-
ability. Simulation results confirm its effectiveness in large-
scale scenarios, offering a viable solution for energy-efficient
wireless networks.

B. Background Work

1) Background Work on Clustering
Clustering, a key technique in machine learning, organizes

similar data points into groups. This section reviews promi-
nent clustering algorithms: Self-Organizing Maps (SOM),
MeanShift, Gaussian Mixture Model (GMM), DBSCAN, and
KMeans.

Starting with MeanShift with Dynamic Bandwidth Selec-
tion, MeanShift is a density-based clustering algorithm that
locates data density peaks by iteratively shifting points toward
regions of higher density. It does not require a predefined
number of clusters and is effective for clusters of arbitrary
shapes [15]. To enhance its performance, we implemented
dynamic bandwidth selection by estimating the initial band-
width using the average distance to the 5th nearest neighbor.
A grid search around this estimate was conducted to optimize
the silhouette score, ensuring that clusters were well-defined
and adapted to the data’s density variations [16].

Continuing with the Gaussian Mixture Model (GMM),
GMM assumes that data points are generated from a mix-
ture of Gaussian distributions, each representing a cluster.
Parameters such as means and variances are optimized using
the Expectation-Maximization (EM) algorithm to maximize
the log-likelihood of the data. The Bayesian Information
Criterion (BIC) was employed to determine the optimal
number of clusters, balancing model complexity and accuracy
[17]. Silhouette scores further validated the compactness and
separation of the identified clusters.

Next, turning to DBSCAN with Optimized Epsilon (ε)
Parameter, DBSCAN is a clustering algorithm that groups
closely packed points into clusters while treating points in
sparse regions as noise. It is particularly effective for datasets
with noise and clusters of arbitrary shapes [18]. The ε parame-
ter, which defines the radius of the neighborhood around each
point, and the minimum number of points (minPts) required
to form a cluster are critical for DBSCAN’s performance.
To optimize ε , we used the "elbow" method on the sorted
distances of the k-th nearest neighbor to identify an initial
estimate. A grid search was then performed around this
value to maximize the silhouette score, ensuring that the
algorithm remained robust and effectively identified well-
defined clusters.

Continuing to KMeans with Elbow and Silhouette Anal-
ysis, KMeans partitions data into K clusters by minimizing
the sum of squared distances between data points and their
respective cluster centroids. The algorithm alternates between
assigning points to clusters and recalculating centroids until
convergence, ensuring compact and well-separated clusters.
To determine the optimal number of clusters, we applied the
elbow method, which identifies the point where adding more



clusters leads to diminishing returns in reducing within-cluster
variance [19]. Silhouette scores further validated the cluster-
ing results by assessing the compactness and distinctiveness
of the clusters, enhancing the overall performance of KMeans
for datasets with spherical clusters.

Finally, moving to Self-Organizing Maps (SOM) with
Adaptive Grid and Metrics, SOM employs a competitive
neural network to project high-dimensional data onto a lower-
dimensional grid while preserving topological relationships.
This approach is particularly useful for clustering and visu-
alizing complex data distributions [20]. We enhanced SOM
by dynamically adjusting the grid size based on the elbow
method and silhouette scores, ensuring optimal clustering
performance. For each cluster, the head was selected as the
point closest to the cluster’s centroid, providing efficient
connectivity and representation. Advanced metrics such as
data rate, power consumption, and signal quality were inte-
grated into the analysis, demonstrating SOM’s robustness and
adaptability for real-time clustering in dynamic environments.

2) Background on Distributed Artificial Intelligence and
BDIx Agents

Distributed Artificial Intelligence (DAI) focuses on en-
abling multiple autonomous agents to collaborate in solving
complex tasks by integrating multi-agent systems, machine
learning, and decentralized control [21]. These agents, mod-
eled using the Belief-Desire-Intention (BDI) framework, are
characterized by their Beliefs (knowledge of the environ-
ment), Desires (goals to achieve), and Intentions (Desires
that have priority 100% and their associated plans are ready
to run) [22]. BDIx agents extend this framework by incor-
porating enhanced reasoning and communication capabilities,
making them well-suited for dynamic and distributed environ-
ments [23], [24]. In networked environments, BDIx agents
autonomously manage tasks like load balancing, resource
allocation, and traffic optimization, dynamically adjusting
their decisions based on real-time feedback [25]. Their ability
to support decentralized decision-making enhances the scal-
ability, robustness, and fault tolerance of distributed AI ap-
plications, including 5G/6G networks, robotics, and industrial
IoT, demonstrating their transformative potential [21], [23].

III. PROBLEM AND SYSTEM DESCRIPTION

This section describes the problem and system components
involved in the formation of a cell-free network environment
utilizing BDIx agents. The proposed system consists of a
base station (BS), multiple User Equipment (UE) devices
belonging to various users, and a central controller responsible
for initiating and coordinating the cell-free network forma-
tion, as illustrated in Figure 1. The BS provides centralized
control, while UEs equipped with embedded BDIx agents
autonomously form dynamic subnetworks by clustering into
cell-free zones. The BDIx agents, enhanced by a Distributed
Artificial Intelligence (DAI) framework, leverage machine
learning to autonomously manage clustering and connectiv-
ity. Each agent executes a clustering algorithm specified by
the central controller, taking into account network topology,
proximity constraints, and quality of service metrics such as
data rate, power consumption, and Channel Quality Indicator
(CQI). By clustering UEs and selecting cluster heads to
serve as access points (APs), the agents establish an effi-
cient cell-free network architecture optimized for local traffic

distribution and communication. The primary objective is to
form a flexible, high-performance cell-free environment that
optimizes both the sum rate and power consumption across
the network. In cases where user traffic and demand increase
within a specific region of the 5G network, the central oper-
ator can activate the BDIx agents to initiate a more localized
cell-free network through the selection of cluster heads to act
as APs. This configuration enables UEs to connect to nearby
APs instead of relying solely on the BS, enhancing data
rates, reducing power consumption, and improving bandwidth
allocation. As shown in Figure 1, the system’s components
work together to create a flexible, high-performance network
that leverages the self-organizing capabilities of BDIx agents
to support a cell-free, clustered architecture.

Figure 1: The System Architecture

IV. METHODOLOGY

This section outlines the comprehensive methodology em-
ployed to simulate and analyze cell-free network environ-
ments, focusing on synthetic data generation, clustering tech-
niques, and network performance optimization. By generating
synthetic datasets with controlled parameters, we replicated
realistic deployment scenarios to assess the scalability and
efficiency of various clustering algorithms. These approaches
were meticulously designed and evaluated using state-of-the-
art metrics to identify optimal clustering configurations. Addi-
tionally, we detail the formation of Access Points (APs) within
clusters and the dynamic role of BDIx agents in establishing a
robust and adaptive cell-free network structure. The proposed
methodology integrates advanced clustering strategies with
dynamic network adjustments, ensuring efficient resource uti-
lization, enhanced connectivity, and adaptability to evolving
network conditions.
A. Synthetic Data Generation
To simulate a realistic cell-free network environment, we gen-
erated synthetic data representing device positions in a two-
dimensional plane. The positions were uniformly distributed
within a 1000m x 1000m area, providing a spatial distribution
akin to actual deployments in urban environments. Synthetic
data allows us to control the number of devices, spatial
density (using Poisson Point Process (PPP) distribution), and
noise level, making it ideal for studying the performance and
scalability of clustering algorithms [26].



B. Clustering Approaches and Optimal Cluster Determina-
tion

Clustering devices in a cell-free network is critical for
managing network resources efficiently and optimizing user
connectivity. We implemented and evaluated five clustering
approaches: MeanShift, Gaussian Mixture Model (GMM),
DBSCAN, KMeans, and Deep Embedded Clustering (DEC).
The primary objective was to identify the optimal number of
clusters for each approach, thus enhancing network efficiency.
The clustering methods employed were fine-tuned using eval-
uation metrics such as the silhouette score, Bayesian Infor-
mation Criterion (BIC), and within-cluster sum of squares
(WCSS). These metrics provide insights into the compactness
and separation of clusters, thereby guiding the selection of
optimal parameters to improve clustering accuracy [16].

Starting with the MeanShift with Dynamic Bandwidth
Selection, MeanShift is a density-based clustering algorithm
that iteratively shifts points toward areas of higher density.
The bandwidth parameter plays a critical role in controlling
the extent of these shifts. To improve its performance, we
enhanced the standard MeanShift by implementing a dynamic
bandwidth selection approach. Initially, we calculated the
bandwidth estimate based on the average distance to the
5th nearest neighbor, a method designed to adapt to vary-
ing densities within the dataset [15]. Subsequently, a grid
search was conducted around this estimate to identify the
bandwidth value that maximized the silhouette score. The
silhouette score, a measure of clustering consistency, evaluates
how closely related a point is to others within its cluster
compared to points in neighboring clusters. By maximizing
the silhouette score, we ensured well-defined clusters and
optimized the performance of the MeanShift algorithm [16].
Moving to the Gaussian Mixture Model (GMM), this model
assumes that data points are generated from a mixture of
multiple Gaussian distributions, each characterized by distinct
means and variances. To determine the optimal number of
components (clusters) for GMM, we utilized the Bayesian
Information Criterion (BIC). The BIC effectively penalizes
over-complex models with excessive clusters, thereby promot-
ing a balance between model simplicity and accuracy [17]. To
further validate the cluster quality, we calculated silhouette
scores for the optimal number of clusters determined by BIC.
This two-step process ensured that clusters were not only
compact but also well-separated, enhancing the reliability and
interpretability of the GMM clustering results. Next, we focus
on DBSCAN with Optimized Epsilon (ε) Parameter. DB-
SCAN (Density-Based Spatial Clustering of Applications with
Noise) is particularly effective for handling noisy datasets.
The algorithm’s performance depends significantly on the
ε parameter, which defines the radius of the neighborhood
around each point. We optimized ε using a two-stage pro-
cess. Initially, we applied the "elbow" method to the sorted
distances of the k-th nearest neighbor, identifying the point
of maximum curvature as an initial estimate. A subsequent
grid search around this estimate was performed to maximize
the silhouette score. By refining the ε parameter in this
manner, we ensured that DBSCAN produced compact clusters
with clearly defined boundaries, as validated by silhouette
analysis [18]. Furthermore, KMeans with Elbow and Silhou-
ette Analysis was employed. KMeans clustering partitions

data into a predefined number of clusters by minimizing
the within-cluster sum of squares (WCSS). To identify the
optimal number of clusters, we employed the elbow method,
which detects the point where adding more clusters yields
diminishing improvements in WCSS. To further validate the
clustering results, silhouette scores were calculated, ensuring
that each cluster was compact and distinct from others [19].
This combination of the elbow method and silhouette analysis
allowed us to identify the optimal cluster count, achieving
both low WCSS and high silhouette scores. This approach
significantly improved the performance and interpretability
of the KMeans clustering process. Finally, we discuss the
Self-Organizing Map (SOM) with Adaptive Grid and
Metrics. SOM is an unsupervised learning technique that
projects high-dimensional data onto a lower-dimensional grid
while preserving topological relationships. We enhanced SOM
by employing an adaptive grid size, determined dynamically
through the elbow method on within-cluster sum of squares
(WCSS) and silhouette scores. For each cluster, the head
was selected as the device closest to the cluster’s centroid,
ensuring effective representation and connectivity. Advanced
metrics such as data rate, power consumption, and signal
quality indicators were incorporated to evaluate clustering
performance comprehensively. SOM demonstrated robustness
in clustering devices with diverse distributions, effectively
capturing non-linear relationships within the data. This capa-
bility made SOM a valuable tool for real-time, resource-aware
clustering in dynamic and heterogeneous environments.

C. Access Point (AP) Creation in Cell-Free Network

The clustered network structure enables the formation of
Access Points (APs) within each cluster. Devices connect to
their respective APs, facilitating a cell-free network structure
in which devices can roam seamlessly across APs without
experiencing connectivity drops.

1) Cluster Head Selection: Each cluster center serves as
an AP, with the device closest to the cluster centroid
designated as the cluster head. This approach minimizes
the average distance between devices in the cluster and
their AP, thereby reducing path loss and improving signal
quality.

2) Connection to APs via Wi-Fi Direct: Devices in
each cluster connect to their respective APs if they are
within the maximum Wi-Fi Direct range of 100 meters.
This configuration optimizes data rates within clusters
by leveraging short-range, high-speed connections. If a
device is within range, its data rate is calculated based
on the signal strength and noise level using the Friis
transmission equation [27].

3) Fallback Connection to Nearest Base Station: De-
vices that are unable to connect to their APs within
the specified range default to connecting to the nearest
base station (BS) using a Massive MIMO setup with
64 antennas. This fallback ensures reliable connectivity
across the network while leveraging the spatial diversity
benefits of Massive MIMO [28].

4) Data Rate and CQI Calculation: For each device, data
rate and Channel Quality Indicator (CQI) were computed
based on the received power, signal-to-noise ratio (SNR),
and network conditions. CQI values, ranging from 1 to
15, were determined according to the SINR thresholds



specified in [29], enhancing the accuracy of link adapta-
tion and resource allocation on the BDIx agent.

The above methodology allows for robust clustering in cell-
free networks, optimizing both connectivity and network effi-
ciency. Each clustering approach was implemented in Python
using the Scikit-Learn and Keras libraries, and the results
were logged for subsequent analysis. Repeated runs were
conducted with varying device counts to assess scalability
and clustering performance across different network sizes.

D. Formation of Cell-Free Network Environment with BDIx
Agents

The formation of a cell-free network environment is initiated
by a control message from a central operator or controller,
which instructs all User Equipment (UE) within the coverage
of a specific base station (BS) to transition to a cell-free net-
work configuration (as shown in Algorithm 1). This message
includes crucial parameters for clustering and connectivity,
enabling the embedded BDIx agents within each device to
coordinate a self-organized network structure. Each BDIx
agent consists of a structured set of beliefs, desires, and
intentions that guide its behavior in forming the cell-free
network. The beliefs of the agent—such as network topology,
UE locations, and connection quality metrics—are established
from the information provided by the BS or by listening to
5G Proximity Services (ProSe) messages [30]. The intention
of each agent, which is to "Establish a Cell-Free Network,"
is prioritized upon receiving the control message, while the
plan library within each agent prioritizes the transition from
desire to intention based on the message parameters.

Upon receiving the instruction, each BDIx agent interprets
the control message containing details about clustering strate-
gies, proximity constraints, and network performance thresh-
olds. These agents obtain network topology information by
gathering UE locations either directly from the associated BS
(centralized topology knowledge) or via 5G ProSe messages.
Through these messages, each UE broadcasts its location and
BS association, allowing every BDIx agent to identify de-
vices relevant to the cell-free environment. In addition, BDIx
agents are programmed to accept proposals from neighboring
agents, enabling a cooperative approach to forming clusters
and designating roles. Each agent independently executes
the specified clustering approach as outlined in the control
message. Common deterministic clustering methods, such
as DBSCAN [18] and MeanShift [15], are used to achieve
consistent results across devices. If methods like KMeans
[19] or deep learning approaches (e.g., SOM and GMM)
[31] are applied, initialization is controlled to ensure uniform
clustering outcomes. Based on the clustering results, cluster
heads are selected; each device determines the nearest device
to the centroid as the Access Point (AP) for the cluster. If
multiple devices are equidistant from the cluster center, the
first device to complete clustering and broadcast its cluster
role assumes the AP role.

Each device is then assigned its role according to proximity
and connection needs:

• Cluster Heads (APs): Selected devices serve as Access
Points (APs) for their clusters, facilitating efficient local
communication.

• Cluster Members: Devices within a 100-meter range of
an AP connect directly to it via Wi-Fi Direct.

• Non-clustered Devices: UEs outside any cluster range
connect to the nearest Base Station (BS), maintaining
connectivity through the traditional network.

Cluster heads broadcast their AP role to nearby devices,
establishing a cell-free connectivity zone. Each device within
a cluster confirms its connection, optimizing local traffic
distribution.

Connected devices evaluate and share network quality
metrics—such as sum rate, power consumption, and Channel
Quality Indicator (CQI)—within the cluster to ensure stable
and efficient communication. These metrics are continuously
monitored for network performance assessment:

• Sum Rate and Power Consumption: These metrics are
compared with the cell-free network values, highlighting
the advantages of clustering.

• Base Station Metrics: Devices record metrics specific
to BS, including UEs connections per BS, contributing
to system-wide quality analysis.

Algorithm 1 Cell-Free Network Formation with BDIx Agents

1: Initialize BDIx agents with beliefs (network state, UE
locations, etc.), desires, e.g., "Establish a Cell-Free Net-
work.", and intentions, "Establish Communication," etc.

2: Receive control message: "Form Cell-Free Environment"
3: for each BDIx agent do
4: Parse message for clustering, AP, and connectivity

parameters.
5: Gather UE locations from BS or ProSe messages.
6: Prioritize the desire to form a cell-free network as the

primary intention.
7: Execute specified clustering algorithm (e.g., GMM,

SOM, KMeans, DBSCAN, MeanShift).
8: Identify candidate cluster heads based on proximity

to centroids.
9: for each neighboring BDIx agent do

10: Exchange information (position, role preference).
11: if determined as cluster head then
12: Assign nearby devices as cluster members.
13: Broadcast AP role within cluster.
14: end if
15: end for
16: if within 100m of AP then
17: Connect to AP via Wi-Fi Direct.
18: else
19: Connect to nearest BS (Massive MIMO).
20: end if
21: Evaluate and share CQI, data rate, and power con-

sumption metrics with cluster members.
22: if network quality metrics fall below threshold then
23: Trigger re-evaluation of AP roles and cluster

structure.
24: Dynamically adjust AP roles or re-cluster as

needed.
25: end if
26: end for
27: Finalize network formation upon achieving stability.
28: Continue monitoring for adaptive reconfiguration triggers.



V. SIMULATION RESULTS AND ANALYSIS

This section provides a detailed description of the metrics
utilized to evaluate clustering and network performance in the
proposed cell-free communication model. It also compares
the performance of various clustering algorithms, including
the novel SOM approach, with traditional methods using
specific network metrics (both are needed, as shown in [32]).
Furthermore, it examines the impact of clustering quality
and network performance metrics across different simulation
scenarios. These metrics are analyzed to assess clustering effi-
ciency, network throughput, energy efficiency, and scalability
in dense network environments. The simulation parameters
are presented in Table I.

Table I: Simulation Parameters

Mobile Parameters Wi-Fi Direct Parameters
Frequency: 2 GHz
Transmit Power: 24.14 dBm
Transmit Antenna Gain: 40 dB
Receive Antenna Gain: 2 dB
Bandwidth: 20 MHz
Path Loss Exponent: 3.5
Noise Power: -174 dBm/Hz
Speed of Light: 3×108 m/s
Hexagon Radius: 1,000 m

Frequency: 2.4 GHz
Transmit Power: 20 dBm
Antenna Gain: 2 dB
Noise Figure: 10 dB
Bandwidth: 1 MHz

A. Evaluation Metrics Used in the Simulation

1) Evaluation Metrics for Clustering Quality
Clustering quality was assessed using three key metrics.

The Silhouette Score measures how well points fit within
their assigned clusters compared to others, with values near
+1 indicating well-separated and cohesive clusters [16]. The
Davies-Bouldin Index evaluates cluster compactness and sep-
aration, where lower values signify dense and well-separated
clusters [33]. Lastly, the Calinski-Harabasz Index assesses
the ratio of between-cluster to within-cluster dispersion, with
higher values reflecting well-defined clusters and clear bound-
aries [34].

2) Evaluation Metrics for Network Performance
Network performance was evaluated using three metrics.

The Sum Rate quantifies the total data rate across all users,
providing a measure of the network’s capacity and efficiency
[35]. Total Power Consumption evaluates the network’s total
energy consumption through communication, having lower
values indicating more sustainable designs without compro-
mising performance [36]. Finally, Total Connections per Base
Station assesses the load distribution, ensuring balanced con-
nections to avoid congestion and optimize resource utilization
[37].

B. Results and Analysis Regarding Cluster Metrics

This section analyzes the cluster metrics used to optimize
cell-free communication topologies through various clustering
algorithms, including SOM [20], GMM [12], MeanShift [11],
KMeans [8], and DBSCAN [13]. The clustering quality was
assessed using Silhouette Score, Davies-Bouldin Index, and
Calinski-Harabasz Index for different approaches. Table II
summarizes the results for a network of 1300 devices. Starting
with the SOM algorithm demonstrated the best overall per-
formance among the clustering methods, achieving the high-
est Silhouette Score of 0.402, indicating strong intra-cluster

similarity. Its Davies-Bouldin Index of 0.683 reflects com-
pact clusters, while its Calinski-Harabasz Index of 1640.93
signifies superior inter-cluster separation. These results make
SOM the most robust choice for handling moderately complex
network topologies. Continuing, the GMM algorithm [12]
also performed well, with a Silhouette Score of 0.393 and
the highest Calinski-Harabasz Index of 1645.92. Its Davies-
Bouldin Index of 0.683 suggests that its clusters are similarly
compact and distinct, making GMM a competitive alterna-
tive to SOM in terms of cluster definition and separation.
Next, the MeanShift [11] achieved a Silhouette Score of
0.350, indicating moderately cohesive clusters. Its Davies-
Bouldin Index of 0.721 suggests slightly less compact clusters
compared to SOM and GMM, while the Calinski-Harabasz
Index of 1515.84 highlights well-defined cluster boundaries.
MeanShift is suitable for networks with moderately complex
topologies, albeit slightly less effective than SOM and GMM.
Moreover, the KMeans [8] provided balanced performance
with a Silhouette Score of 0.369 and a Calinski-Harabasz
Index of 1170.35. However, its Davies-Bouldin Index of 0.880
indicates that its clusters are less compact compared to the
other top-performing methods. Despite this, KMeans remains
an effective option for networks with moderate clustering re-
quirements. Evenmoe, the DBSCAN [13] exhibited the lowest
clustering quality, with a Silhouette Score of 0.262 and a
Calinski-Harabasz Index of 5.07, indicating poor inter-cluster
separation. Its Davies-Bouldin Index of 5.20 reflects less
compact clusters with significant overlap, making DBSCAN
unsuitable for this specific dataset and parameter settings.

Finally, these results underscore that SOM outperforms
other clustering methods for the analyzed dataset, offering
the most balanced combination of intra-cluster cohesion and
inter-cluster separation. GMM also excels in cluster definition,
while MeanShift and KMeans provide viable alternatives
for less demanding network topologies. DBSCAN, however,
struggled to achieve effective clustering under the given
conditions.

Table II: Clustering Metrics
Approach Silhouette Score Davies-Bouldin Index Calinski-Harabasz Index

SOM 0.402 0.683 1640.93
GMM [12] 0.393 0.683 1645.92

MeanShift [11] 0.350 0.721 1515.84
KMeans [8] 0.369 0.880 1170.35

DBSCAN [13] 0.262 5.20 5.07

C. Results and Analysis Regarding Network Metrics
This section presents an in-depth analysis of the network
metrics for optimizing the existing traditional network by
creating the cell-free communication topologies using various
algorithms, including SOM, GMM, MeanShift, KMeans, and
DBSCAN. Also, it provides a detailed analysis of network
performance metrics when comparing the traditional network
approach with the cell-free architecture using the SOM (best
approach) clustering algorithm.

1) Sum Rate
a) Sum Rate Examination among the Approaches

Figure 2a presents the sum rate for different approaches.
SOM consistently achieves the highest total sum rate across
all device counts, demonstrating its capability to dynamically
allocate resources and optimize network throughput. For 100
devices, SOM achieves a sum rate of 2.81 Gbps, outperform-
ing GMM (2.23 Gbps), KMeans (2.18 Gbps), MeanShift (2.03



Gbps), and DBSCAN (2.28 Gbps). This trend continues at 500
devices, where SOM reaches 14.86 Gbps, significantly higher
than GMM (13.87 Gbps), KMeans (13.68 Gbps), MeanShift
(9.54 Gbps), and DBSCAN (12.01 Gbps). At 1300 devices,
SOM peaks at 36.88 Gbps, while GMM follows with 35.88
Gbps, and KMeans closely trails at 35.53 Gbps. MeanShift
and DBSCAN lag at 27.11 Gbps and 30.32 Gbps, respec-
tively. These results highlight SOM’s superior clustering and
resource management capabilities, making it ideal for high-
bandwidth applications and dense networks.

b) Sum Rate Examination among Cell-Free SOM with
Traditional BS Approach

Figure 2b compares the sum rate performance between
traditional and cell-free architectures using the SOM clus-
tering algorithm. For 100 devices, the cell-free approach
achieves 2.81 Gbps compared to 2.04 Gbps for the traditional
architecture, marking a 37.75% improvement. At 500 devices,
the cell-free approach reaches 14.86 Gbps, while the tradi-
tional architecture achieves 12.69 Gbps, a 17% improvement.
At 1300 devices, the cell-free architecture peaks at 36.88
Gbps, a 12.21% increase over the traditional approach’s 32.87
Gbps. These results underscore the cell-free architecture’s
scalability and efficiency in maintaining high throughput and
resource optimization, making it suitable for dense network
deployments.
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Figure 2: Sum rate comparisons for different approaches and
between traditional and cell-free networks.

2) Total Power Consumption
a) Total Power Consumption Examination among the

Approaches
Figure 3a illustrates the total power consumption for dif-

ferent approaches. SOM demonstrates an excellent balance
of energy efficiency and performance. At 100 devices, SOM
consumes 13,004 dBm, the lowest among all approaches.
GMM, KMeans, and DBSCAN consume 13,953 dBm, 14,067
dBm, and 13,810 dBm, respectively. MeanShift exhibits the
highest consumption at 14,404 dBm. For 500 devices, SOM
maintains its efficiency with a total power consumption of
65,215 dBm, significantly lower than GMM (69,048 dBm),
KMeans (69,425 dBm), MeanShift (74,491 dBm), and DB-
SCAN (68,949 dBm). At 1300 devices, SOM’s consumption
is 168,491 dBm, showcasing a 13.29% improvement com-
pared to GMM (178,491 dBm), and a 6% advantage over
DBSCAN (177,947 dBm). MeanShift, on the other hand,
consumes the highest power at 194,581 dBm. These results
validate SOM’s energy efficiency in resource allocation, mak-
ing it a viable choice for energy-constrained networks.

b) Total Power Consumption among Cell-Free SOM with
Traditional BS Approach

Figure 3b compares the power consumption between tra-
ditional and cell-free architectures using the SOM clustering
algorithm. At 100 devices, the traditional approach consumes
20,583 dBm, while the cell-free system reduces this to 13,004
dBm, achieving a 36.79% reduction. At 500 devices, the
traditional approach consumes 102,033 dBm, compared to
65,215 dBm for the cell-free system, a 36.10% reduction. At
1300 devices, the traditional architecture consumes 263,207
dBm, while the cell-free system reduces this to 168,491
dBm, achieving a 36.00% energy efficiency improvement.
These results emphasize the energy-saving potential of cell-
free architectures, which minimize redundant transmissions
and enhance sustainability.
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Figure 3: Power consumption comparisons for different ap-
proaches and between traditional and cell-free networks.

3) Number of Connections
Figure 4 depicts the base station connections for 1300

devices across different approaches. SOM achieves an effi-
cient number of connections, highlighting its robust ability
to handle large-scale networks while maintaining balance
in load distribution. GMM and KMeans also perform well,
ensuring devices remain well-connected even in dense net-
work scenarios. DBSCAN produces significantly lower con-
nections towards other sharing devices (APs/BSs), indicating
its limitations in managing devices effectively in high-density
environments. MeanShift also shows reduced connections,
reflecting its limited scalability. SOM’s adaptive clustering
approach ensures connectivity even for devices located in
challenging network conditions, making it the most effective
method for maximizing network connectivity.

VI. CONCLUSIONS AND FUTURE WORK

This work integrates multiple clustering algorithms, including
SOM, GMM, KMeans, MeanShift, and DBSCAN, to optimize
clustering and network performance in cell-free network ar-
chitectures. By improving cluster definition and separation,
the proposed methodology enhances key network metrics such
as sum rate, power consumption, and connection efficiency.
These results demonstrate the potential of clustering-based
approaches to effectively address the challenges of dense
network environments, paving the way for more scalable
and energy-efficient communication systems. The analysis
highlights that the SOM algorithm outperforms other clus-
tering methods in terms of cluster definition, separation,
and overall network performance, as evidenced by its supe-
rior Silhouette Score, Calinski-Harabasz Index, and Davies-
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Figure 4: Base station connections for 1300 devices across
different approaches.

Bouldin Index. GMM follows closely, offering competitive
performance, particularly in achieving high cluster definition
and separation. KMeans and MeanShift provide balanced
results, making them viable options for moderately complex
scenarios. In contrast, DBSCAN faces challenges in achieving
high clustering quality for dense networks. Additionally, the
cell-free architecture using SOM significantly reduces
power consumption and increases throughput compared
to traditional network architectures, showcasing its poten-
tial as a sustainable solution for modern wireless networks.

Future research should focus on advancing clustering algo-
rithms by incorporating machine learning and deep learning
techniques to dynamically adapt to changing network condi-
tions.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under
Grant Agreement No. 739578, the ADROIT6G project of
the SNS-JU under Grant Agreement No. 101095363, and the
Government of the Republic of Cyprus through the Deputy
Ministry of Research, Innovation and Digital Policy.

REFERENCES

[1] H. Q. Ngo, A. Ashikhmin, H. Yang, T. L. Marzetta et al., “Cell-
free massive mimo versus small cells,” IEEE Transactions on Wireless
Communications, vol. 16, no. 3, pp. 1834–1850, 2017.

[2] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Transactions on Wireless Commu-
nications, vol. 9, no. 11, pp. 3590–3600, 2010.

[3] Z. Chen and et al., “Performance analysis of cell-free massive mimo
systems with zero-forcing detectors,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 2, pp. 1149–1160, 2018.

[4] E. Björnson and et al., “Making cell-free massive mimo competitive
with mmse processing and centralized implementation,” IEEE Trans-
actions on Wireless Communications, vol. 18, no. 10, pp. 4601–4613,
2019.

[5] F. e. a. Liu, “Cell-free massive mimo systems: A survey,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2068–2106,
2021.

[6] J. e. a. Debruyne, “Cell-free massive mimo with digital beamforming: A
scalable implementation with large numbers of antennas,” IEEE Journal
of Selected Areas in Communications, vol. 38, no. 8, pp. 1556–1568,
2020.

[7] A. Mughees et al., “Towards a scalable and flexible cell-free massive
mimo network for 6g: The role of fronthaul, computing and storage,”
IEEE Wireless Communications, vol. 28, no. 4, pp. 148–155, 2021.

[8] R. Arshad, S. Baig, and S. Aslam, “User clustering in cell-free massive
mimo noma system: A learning based and user centric approach,”
Alexandria Engineering Journal, vol. 90, p. 183–196, 2024.

[9] K. Shin, Y. Choi, and H. Song, “Clustering method for reducing
backhaul signaling requirements among cpus in cell-free mimo multiple
cpus system,” in 2024 9th International Conference on Multimedia and
Image Processing (ICMIP). Osaka, Japan: ACM, 2024.

[10] F. Riera-Palou, G. Femenias, A. G. Armada, and A. Pérez-Neira, “Clus-
tered cell-free massive mimo,” in 2018 IEEE Global Communications
Conference (GLOBECOM). Abu Dhabi, UAE: IEEE, 2018.

[11] X. Sharma and Others, “Optimal access point clustering for cell-
free massive mimo using meanshift,” IEEE Transactions on Wireless
Communications, 2024.

[12] X. Bashar and Others, “Access point clustering in cell-free massive
mimo using gmm,” IEEE Transactions on Wireless Communications,
2024.

[13] E. Bjornson and L. Sanguinetti, “Scalable cell-free massive mimo
systems using dbscan,” IEEE Transactions on Communications, 2020.

[14] F. Tan, Q. Deng, and Q. Liu, “Green cell-free massive mimo: A deep
embedded clustering approach,” EURASIP Journal on Advances in
Signal Processing, 2024.

[15] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[16] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[17] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD), 1996, pp. 226–231.

[19] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281–297.

[20] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[21] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383,
2000.

[22] A. S. Rao and M. P. Georgeff, “Bdi agents: From theory to practice,” in
Proceedings of the 1st International Conference on Multiagent Systems
(ICMAS), 1995, pp. 312–319.

[23] G. Weiss, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press, 1999.

[24] I. Ioannou, “Enhancing distributed ai with bdix agents: A framework for
multi-agent coordination,” Journal of Distributed Artificial Intelligence,
vol. 12, no. 1, pp. 22–35, 2024.

[25] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley
& Sons, 2009.

[26] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge
University Press, 2020.

[27] T. S. Rappaport, Wireless Communications: Principles and Practice.
Prentice Hall, 1996.

[28] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Massive mimo
is a reality–what is next?: Five promising research directions for antenna
arrays,” Digital Signal Processing, vol. 61, pp. 3–20, 2017.

[29] S. Sesia, I. Toufik, and M. Baker, LTE: The UMTS Long Term Evolution.
John Wiley & Sons, 2011.

[30] “3GPP TS 23.304: Proximity Services (ProSe); Stage 2,” 3rd
Generation Partnership Project (3GPP), Tech. Rep., 2020, version
16.0.0. [Online]. Available: https://www.3gpp.org/ftp/Specs/archive/
23_series/23.304/23304-g00.zip

[31] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” Proceed-
ings of the 25th International Conference on Machine Learning (ICML),
pp. 1096–1103, 2008.

[32] I. Ioannou, C. Christophorou, P. Nagaradjane, and V. Vassiliou, “Per-
formance evaluation of machine learning cluster metrics for mobile
network augmentation,” in 2024 International Conference on Wireless
Communications Signal Processing and Networking (WiSPNET), 2024,
pp. 1–7.

[33] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224–227, 1979.

[34] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, 1974.

[35] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[36] Y. Zhang, T. Huang, G. Wu, and Y. Wang, “Energy-efficient 5g for a
greener future,” Nature Electronics, vol. 1, no. 1, pp. 1–2, 2018.

https://www.3gpp.org/ftp/Specs/archive/23_series/23.304/23304-g00.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.304/23304-g00.zip


[37] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5g be?” IEEE Journal on Selected Areas

in Communications, vol. 32, no. 6, pp. 1065–1082, 2014.

View publication stats

https://www.researchgate.net/publication/386989162



