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Abstract—The Internet of Things (IoT) revolutionises data
flow management by interconnecting various devices, from sim-
ple sensors to complex systems, for varied applications, including
smart homes and industrial automation. However, this extensive
integration also renders IoT networks vulnerable to cyber
threats, mainly jamming attacks, which can disrupt wireless
communications and risk total network failure, significantly
impacting critical sectors such as healthcare and industrial au-
tomation. This research introduces a novel approach to IoT net-
work security, transitioning from conventional detection meth-
ods to a refined strategy emphasising the accurate localisation
of jamming sources. Integrating machine learning with network
security to counter jamming attacks establishes a foundation
for future exploration. It effectively utilises Fuzzy Logic-based
Intrusion Detection Systems (FLIDS) for the initial detection
of jamming threats, addressing a vital need for heightened
security in IoT networks. Central to our research is adopting
advanced machine learning models, including Recurrent Neural
Network - Bidirectional Long Short-Term Memory (RNN-B-
LSTM), Temporal Convolutional Network (TCN), Recurrent
Neural Network (RNN) and Convolutional Neural Network
(CNN). These models are carefully selected for their capacity to
process complex data patterns and suitability for real-time IoT
environments. We conduct a thorough evaluation of these models
using various metrics. Consequently, the RNN-B-LSTM model,
in particular, demonstrates exceptional accuracy in jammer
localisation.

Index Terms—ML Localisation, ML Jamming Localisation,
FLIDS, RNN-B-LSTM, TCN, RNN, CNN, Jamming identifica-
tion, Jamming Localisation

I. INTRODUCTION

The Internet of Things (IoT) represents a network of inter-
connected devices, from simple sensors to complex systems,
integrated into various aspects of daily life, such as smart
homes and industrial systems. However, the widespread de-
ployment of IoT devices and their inherent design limitations,
like limited processing capacity and energy efficiency focus,
make them susceptible to cyberattacks, mainly jamming
attacks. These attacks, which disrupt wireless connectivity
by flooding networks with radio interference, exploit the
unrestricted nature of wireless channels, emphasising the need
for sophisticated security solutions. Traditional methods often
must catch up against such advanced threats, highlighting the
urgency for effective defence mechanisms.

The impact of jamming on IoT networks is profound, lead-
ing to disruptions or complete paralysis, especially critical
in sectors like healthcare and industrial automation. Jam-
ming attacks’ unpredictable nature and IoT devices’ energy
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constraints complicate defence strategies. Addressing these
challenges requires comprehensive approaches, focusing on
advanced localisation methods and energy-efficient solutions.
The evolution of jamming threats has spurred the develop-
ment of more precise localisation techniques, where machine
learning emerges as a promising tool for enhancing detection
and accuracy.

This study investigates novel localisation methods in IoT
networks against jamming interference, building upon Fuzzy
Logic-based Intrusion Detection Systems (FLIDS). The re-
search integrates FLIDS for initial jamming detection, form-
ing a base for further localisation strategies. These strategies
are evaluated using metrics like Euclidean error distance
and network layer metrics such as Retransmissions and
Expected Transmission Count (ETX). Advanced machine
learning models, including RNN-B-LSTM, TCN, RNN and
CNN Models, are incorporated for data handling capabilities
and real-time processing suitability in IoT environments. The
models are assessed through various metrics, with RNN-B-
LSTM showing remarkable accuracy, making it suitable for
precise localisation in jamming scenarios.

In conclusion, the RNN-B-LSTM model stands out for
accurate jammer localisation in IoT networks, but the model
selection should consider the specific IoT environment’s
demands and constraints. This study demonstrates machine
learning’s potential in counteracting jamming attacks and
guides future research in technology integration for IoT
network security. The novelty of this approach lies in in-
tegrating FLIDS [1], [2] for initial attack detection and
employing advanced machine-learning models for precise
jamming Source localisation. The empirical validation of
these methods using simulations in Contiki OS and the Cooja
tool with TelosB sensor nodes offers valuable insights for
practical implementation in real-world scenarios.

The novelty of our approach lies in the seamless integration
of a Fuzzy Logic-based Intrusion Detection System (FLIDS)
with advanced machine learning models such as RNN-B-
LSTM, TCN Model, RNN and CNN. This integration is
tailored explicitly for efficient jamming attack detection and
accurate localisation within IoT networks. Diverging from
conventional detection methods, our strategy excels in recog-
nising the presence of threats and precisely determining
their origins. By leveraging the unique capabilities of FLIDS
and these cutting-edge models, our approach sets a new
benchmark in IoT network security, enabling both effective
detection and targeted countermeasures against jamming at-
tacks. The key contributions of this paper are summarised
below:

1) Novel and accurate ML localisation Methods for IoT



Networks: Examination of the efficacy of innovative
ML localisation techniques in IoT networks facing
jamming interference.

2) Advanced Machine Learning Models: Incorporation
of RNN-B-LSTM, TCN Model, and RNN Model for
handling complex data patterns and real-time process-
ing in IoT environments.

3) Highlighting RNN-B-LSTM Model’s Superiority:
Demonstration of the RNN-B-LSTM model’s effective-
ness in jammer localisation through its high accuracy
and reliability.

4) Foundational Framework for Future Research: Lay-
ing the groundwork for future exploration in integrating
machine learning and IoT network security, particularly
against jamming attacks.

5) Offering a comprehensive methodology: for detecting
and localising Jammers security breaches through the
utilisation of FLIDS (Fast Local Intrusion Detection
System) technology.

6) Network Metrics: Our approach focuses on network
metrics.

7) Utilization of Multivariate Regression: This study
innovatively applies the Multivariate Regression tech-
nique 1 to enhance the accuracy of localization in IoT
networks.

The rest of the paper is structured as follows. Section
II provides related work on the ML localisation approaches
and the background information on the localisation, jamming
attacks, FLIDS and the investigated ML approaches. The
problem description is elaborated in Section III. Next, the
methodology used for our investigation is shown in Section
IV along with the assumptions, evaluation metrics used,
hyperparameters optimisation, system emulation setup and
the localisation algorithm used to create the input features and
send them as one-time series to the ML models for prediction
of the x and y values of the jammer. The investigated
approaches’ results and efficiency are examined, evaluated
and compared in Section V. Finally, Section VI includes
concluding remarks and our future directions.

II. RELATED WORK AND BACKGROUND KNOWLEDGE

A. Related Work

This section briefly reviews the open literature approaches
related to approaches that utilise ML for localisation. Also,
we compare the investigated approaches with the paper-
examined approach.

Feng et al. [3] introduced a deep transfer learning method
for disturbance localisation in power systems, employing
Principal Component Analysis (PCA) and Smooth Pseudo
Wigner-Ville Distribution (SPWVD). This method, notable
for its two-stage approach, achieved up to 100% accuracy,
significantly enhancing accuracy and efficiency in challenging
scenarios, including those with noise and topology changes.
Continuing with Abdallah et al. [4], they developed a method

1Multivariate Regression is particularly effective in this context as it
allows for the simultaneous analysis of multiple predictor variables. This
is essential in IoT environments where factors such as signal strength, noise,
and interference influence localisation accuracy. By integrating multiple
variables, Multivariate Regression provides a more comprehensive distinction
in the understanding of the underlying patterns and relationships, leading to
more accurate and reliable predictions than those derived from univariate
methods.

integrating received signal strength (RSS) from cellular tow-
ers with a Weighted K-nearest neighbour (WKNN) algorithm
and a multi-layer neural network. This integration resulted
in a mean localisation error of 5.9 meters and 5.1 meters
in two urban environments and 8.7 meters in a rural set-
ting, representing improvements of 41%, 45%, and 16%,
respectively, over the WKNN-only approach. Next, Singh et
al. [5] proposed SVR-based methods for predicting Average
localisation Error (ALE) in wireless sensor networks. Among
the methods evaluated, R-SVR outperformed others with a
high correlation coefficient of 0.82 and a low RMSE of
0.147m, indicating superior prediction accuracy. Additionally,
Yean et al. [6] employed Random Forest models for indoor lo-
calisation using Wi-Fi RSSI data. The methodology achieved
high accuracy rates of 88.21% and 86.34% for the N4 and
UJI datasets, respectively. Further, by reducing features to
only 20% using PCA, the models maintained around 80%
accuracy.

In their study, Berz et al. [7] evaluated. Artificial Neural
Network (ANN) and Support Vector Regression (SVR) mod-
els for localising stationary objects in indoor environments.
The ANN model consistently outperformed the SVR model,
showing a 31% better performance on average. The locali-
sation error for the ANN model ranged between 9 and 29
cm in various test scenarios. Also, Phillips and colleagues
[8] introduced the Acoustic Landmark Locator (ALL) using
acoustic sensing and neural networks for indoor localisation.
The system demonstrated its ability to successfully determine
a person’s location in a realistic indoor environment, leverag-
ing the unique acoustic characteristics of indoor spaces. Even
more, Masoudinejad et al. [9] explored machine-learning
techniques for indoor localisation in warehouses using IoT
data. The Random Forest classifier, the most accurate model,
improved its accuracy from 65% to 85% with the inclusion
of reference values, emphasising its utility in complex ware-
house environments.

Aqeel et al. [10] presented a study on node localisa-
tion in LoRaWAN environments, especially under sandstorm
conditions. They employed SVR and GPR, showing that
the multiple regression model performs well even in signal
degradation, with an average RMSE for the ANN and SVR
models being 20.6 cm and 16.3 cm, respectively. Finally,
Islam and co-authors [11] investigated LoRa technology
for localisation using machine learning models. Their ap-
proach, which combined range estimation and trilateration,
improved localisation accuracy by about 10% for ranging
and 26.58% for trilateration-based localisation compared to
using RSSI alone. The method achieved an average distance
error of 43.97 meters, significantly improving over traditional
machine-learning techniques.

Table I compares various localisation methods in IoT
networks. Our approach stands out as it utilises a combination
of machine learning techniques, including RNN-B-LSTM,
RNN, TCN, and CNN, tailored explicitly for IoT networks.
This approach achieves an average distance error of 0.094
meters and supports jammer identification in the network
layer (RPL). Compared to other methods in the table, it offers
superior performance in terms of accuracy and the ability
to detect and locate jammers, making it a robust choice for
localisation in IoT networks. Finally, it can provide in one
evaluation the x and y at the same time as numerical values
(Multivariate Regression).



TABLE I: Comparison of ML Localisation Methods in IoT Networks

Ref. Approach Key Features Performance Metrics Network
Layer
Metrics

Jammer
Locali-
sation

Avg.
Dist.
Error
(m)
<0.30

Multivariate
Regres-
sion
(X,Y)

Most
Accu-
rate
ML

Feng et al.
[3]

Deep Transfer
Learning (DTL)

PCA, SPWVD, Two-stage
approach for system and
area-level localisations

Up to 100% accuracy in
challenging conditions

No No Yes
(< 0.30)

No DTL

Abdallah et
al. [4]

RSS with
WKNN and
Neural Network

Integration of WKNN’s
clustering and neural net-
work position estimation

Mean localisation error:
5.9m, 5.1m (urban), 8.7m
(rural)

No No No No Neural
Network

Singh et al.
[5]

SVR Methods
(S-SVR, Z-SVR,
R-SVR)

Features from modified
Cuckoo Search simula-
tions

R-SVR: Correlation
coefficient 0.82, RMSE
0.147m

No No Yes
(0.147)

No R-SVR

Yean et al.
[6]

Random Forest
with Wi-Fi RSSI
Data

Feature selection, Hyper-
parameter tuning, PCA

Accuracy: 88.21% (N4
dataset), 86.34% (UJI
dataset)

No No No No Random
Forest

Berz et al.
[7]

ANN and SVR
for Object Local-
ization

Multi-sensor system, CV
subsystem for RFID local-
ization

ANN outperforms SVR
with 9-29 cm localization
error

No No Yes
(0.09 -
0.29)

No ANN

Phillips et al.
[8]

Acoustic
Landmark
Locator (ALL)

Neural network algorithm,
Acoustic sensing

Effective indoor localiza-
tion with landmark accu-
racy

No No Yes
(< 0.30)

No Neural
Network

Masoudinejad
et al. [9]

Machine Learn-
ing in Warehouse
Localization

SVM, DT, RF, KNN,
Gaussian Naive Bayes,
IoT data

Random Forest most ac-
curate: 65%-85% with ref-
erence values

No No No No Random
Forest

Aqeel et al.
[10]

SVR and GPR in
LoRaWAN

RSSI data processing,
Multiple regression model

Average RMSE: 20.6 cm
(ANN), 16.3 cm (SVR)

No No Yes
(0.206,
0.163)

No SVR

Islam et al.
[11]

LoRa
Technology
with ML Models

RF, kNN, SVM, GB,
MLP, RSSI, SF, SNR

Average distance error:
43.97 meters

No No No No MLP

Our
Approach

FLIDS with Ad-
vanced ML Mod-
els

Integration of FLIDS for
jamming detection, RNN-
B-LSTM for precise lo-
calisation along with the
TCN, RNN and CNN

MSE: 0.006, MAE: 0.058,
RMSE: 0.081, R-squared:
0.999, Median AE: 0.040,
Avg Dist Error: 0.094m

Yes Yes Yes
(0.094)

Yes RNN-B-
LSTM

B. Background Knowledge

This section presents background information that we
used in our approach for the localisation algorithms. More
specifically, we examine the localisation types and show the
centroid algorithm. The types of jamming attacks, the FLIDS
detection algorithm that we used, and a description of the
investigated ml approaches.

1) Types of Localisation algorithms: The area of local-
isation algorithms can be broadly categorised into Range-
based algorithms and Range-free algorithms. Range-based
algorithms (i.e., Time of Arrival (ToA), Time Difference
of Arrival (TDoA), Angle of Arrival (AoA), and Received
Signal Strength (RSS)) they employ precise distance or angle
measurements to determine location. These techniques, as
described in [12]–[18], frequently necessitate the utilisation
of advanced and expensive equipment such as directional an-
tennas for measuring distances [19]–[21]. Conversely, Range-
free algorithms rely on the connectivity data between nodes
and use protocols that do not depend on radio signal strength
measurements (i.e., the Centroid Algorithm, Approximate
Point In Triangulation (APIT), DV-Hop algorithm, and the
Amorphous Positioning Algorithm) by determining a node’s
location based on its communication range with other nodes.
If two nodes can communicate, they are likely within their
maximum transmission range of each other [21]–[23].

The Range-based methods are known for their precision.
Range-free approaches are gaining attention as more econom-
ical solutions, mainly when high precision is not paramount
[24]. However, our approach is in the second category,
”Range-free” algorithms, and achieves high precision.

2) Centroid Localisation Technique: The Centroid local-
isation Technique is analysed in this research because the
investigated approach uses the results of this technique. So,
the Centroid approach is utilised to localise network jammers
by analysing the positions of nodes affected by jamming.
This method calculates the jammer’s location by averaging
the coordinates of all jammed nodes [25]. Centroid’s robust-
ness to radio propagation uncertainties is countered by its
sensitivity to the spatial distribution of jammed nodes, where
biased estimations can occur due to uneven distribution. The
accuracy of the centroid improves with a uniform distribution
of jammed nodes in a dense network.

Given N jammed nodes, represented as
{(X1, Y1), (X2, Y2), . . . , (XN , YN )}, the algorithm for
estimating the jammer’s location is shown in Algorithm 1
and the equation used by the algorithm is shown in the
Equation 1.

We excluded the Centroid approach as a competitive ap-
proach from our investigation for two reasons. Firstly, it
is not a machine-learning approach. Secondly, the centroid
estimates are unsuitable for our approach due to the nega-
tive R-squared values for both X (-0.347) and Y (-0.288),
indicating that the models could be better fitted compared to
a simple average. Moreover, the substantial Mean Squared
Error values for X (2698.02) and Y (2579.90), as well as the
Root Mean Squared Error values for X (51.94) and Y (50.79),
suggest considerable average forecast inaccuracies. So, these
estimations cannot be used for precise localisation. However,
we use the centroid output for x and y as features of our ML
models (as shown in Section IV-C).



Algorithm 1 Centroid Algorithm

1: Initialize sum of x-coordinates, SX = 0
2: Initialize sum of y-coordinates, SY = 0
3: Initialize number of jammed nodes, N = 0
4: for each jammed node (Xi, Yi) do
5: SX ← SX +Xi

6: SY ← SY + Yi

7: N ← N + 1
8: end for
9: Calculate centroid coordinates:

10: X̂jammer ← SX

N

11: Ŷjammer ← SY

N

12: return (X̂jammer, Ŷjammer)

(
X̂jammer, Ŷjammer

)
=

(∑N
i=1 Xi

N
,

∑N
i=1 Yi

N

)
(1)

3) Types of Jamming Attacks: The two primary categories
of Jammer types are Proactive, and Reactive [26], [27].

The Proactive jammers consistently initiate network distur-
bances and can be categorised into three distinct forms. First,
the Constant Jammer which emits uninterrupted and unpre-
dictable signals, disrupting network communications without
following MAC rules. Next, the Deceptive Jammer employs
a strategy of transmitting packets that appear genuine, hence
complicating detection efforts. However, it emits data packets
that cannot be identified, albeit at the cost of reduced energy
efficiency. Finally, the Random Jammer switches between
periods of inactivity and activity, perhaps mimicking the
behaviour of the first two varieties when it is active. It
has a higher energy efficiency but a lower level of constant
effectiveness.

Continuing with the Reactive jammers, these jammers
monitor the activities on the channel and emit a random signal
to disrupt ongoing transmissions when activity is detected.
Monitoring a channel requires considerably less power than
proactive jamming. The Reactive jammers exemplify this
category of jammers, exhibiting characteristics such as being
challenging to detect, intricate to construct, less energy-
efficient, and limited to operating on a single channel [28].

4) FLIDS (Fuzzy Logic-based Intrusion Detection System):
FLIDS, or the Fuzzy Logic-based Intrusion Detection System,
is an intelligent and adaptive technique designed for detecting
various types of jamming attacks in Internet of Things
(IoT) networks. It operates in a distributed manner, meaning
detection is performed locally using information sourced or
calculated at the node level. The system utilises a combination
of metrics such as ”Expected Transmission Count (ETX) &
Retransmissions” and ”Packets Drop per Terminal (PDPT)
& Retransmissions” as inputs into a Fuzzy inference system.
This results in generating a Jamming Index (JI)2, which is key
to identifying jamming attacks and quantifying the degree of
jamming impact on a node. Initially, the algorithm gathers
crisp values of ETX, PDPT, PDR, and Retransmissions from

2The Jamming Index (JI) is a numerical value ranging from 0 to 1, used
to quantify the level of jamming in a network. A JI close to 0 indicates
no jamming, while a value approaching 1 signifies severe jamming. It is
calculated using network metrics like Expected Transmission Count (ETX)
and Retransmissions, processed through a Fuzzy Inference System (FIS),
which makes it a suitable measure in scenarios where network conditions
are uncertain or variable.

network nodes. These values are then fuzzified, preparing
them for processing through fuzzy logic. The essence of the
algorithm is its application of a specific fuzzy rule base to
these inputs. For example, a rule might infer that a combi-
nation of ’Low’ ETX and ’High’ Retransmissions suggests
a ’Medium’ level of jamming, indicated by the JI. After
applying these rules, the algorithm produces a fuzzy output,
subsequently defuzzified to provide a clear, quantifiable mea-
sure of jamming. This final output, the Jamming Indicator, is
a crucial metric representing the likelihood or intensity of a
jamming attack on a node. This process allows for effective
identification and mitigation of potential jamming issues in
the network. The approach has demonstrated high accuracy in
recognising different types of jamming attacks across various
situations, and it is characterised by low memory usage
and fast execution times. This makes FLIDS a suitable and
efficient choice for IoT environments where resources are
often limited [28].

a) Explanation on Parameters used for Jamming Attack
Detection: Existing systems for detecting jamming attacks
have utilised a significant multitude of parameters [28]. These
metrics are measured in multiple layers, including received
or dropped packets, collisions or (re)transmissions, routing
parameters such as hops and control packet numbers, energy
consumption, and physical signal parameters. Our approach
utilises ETX (Expected Transmission Count), Retransmis-
sions, and PDPT (Packets Dropped per Terminal). These
inputs are fed into a fuzzy inference system. The selection
of these values is grounded in prior research [28], which
shows that the amalgamation of ”ETX & Retransmissions”
and ”PDPT & Retransmissions” yielded the highest level of
accuracy. Additionally, both methods rely on distributed data
and can be acquired and executed locally at nodes, which we
find attractive. The parameters used are described briefly as
follows: i) The Retransmissions are the number of repeated
transmissions needed for a frame to be effectively relayed to
the subsequent node; ii) The Packets Dropped per Terminal
(PDPT) represent the proportion of received packets that did
not pass the Cyclic Redundancy Check (CRC) conducted by
the node, compared to the total number of packets received by
the node within a specific time frame; and iii) The Expected
Transmission Count (ETX) is a measure that indicates the
anticipated number of transmissions needed to send and
receive a packet over a wireless network successfully. It is
important to note that the FLIDS end up using the ”ETX
& Retransmissions” metrics, where ETX is a parameter of
Routing Protocol for Low-Power and Lossy Networks (RPL)
[29], thus making this work one of the few, if not the only
one considering such routing-level parameters for Jamming
detection.

C. Investigated ML approaches

In this section, we show the ML approaches that we
investigate in this examination. The examination approaches
are the folloiwing:

1) RNN-B-LSTM (Recurrent Neural Network - Bidi-
rectional Long Short-Term Memory): This approach
utilises a bidirectional LSTM structure within a recur-
rent neural network. It is designed to process sequences
of data by maintaining internal memory states. The
bidirectional architecture allows the network to have



both forward and backward information about the se-
quence at every point (as shown in Eq. 2).

ht = f(Wihxt + bih +Whhh(t−1) + bhh) (2)
where ht is the hidden state at time t, xt is the input
at time t, and W and b are parameters of the model.

2) TCN Model (Temporal Convolutional Network):
The TCN model employs convolutional layers designed
explicitly for sequence modelling tasks. It uses causal
convolutions, ensuring that the output at time t is
convolved only with elements from time t and earlier
in the previous layer (as shown in Eq. 3).

yt =

N−1∑
i=0

f(xt−i) · wi (3)

where yt is the output at time t, N is the size of the
kernel, x is the input, w is the weight, and f is a
nonlinear function.

3) RNN Model (Recurrent Neural Network): RNNs are
a type of neural network where connections between
nodes form a directed graph along a temporal sequence,
enabling it to exhibit temporal dynamic behaviour.
Unlike feedforward neural networks, RNNs can use
their internal state (memory) to process sequences of
inputs (as shown in Eq. 4).

ht = σ(Wxhxt +Whhh(t−1) + b) (4)
where σ is the activation function, ht is the hidden state
at time t, xt is the input, and W and b are the network
weights and biases.

4) CNN Model (Convolutional Neural Network): CNNs
are primarily used in analysing visual imagery and are
known for their ability to recognise image patterns.
They employ a mathematical operation called convo-
lution, a specialised linear operation. CNNs are used to
detect and interpret complex features in data (as shown
in Eq. 5).

Z =
∑
i,j

(X ∗K)i,j (5)

where Z is the output, X is the input, K is the kernel,
and ∗ denotes the convolution operation.

III. PROBLEM DESCRIPTION

In IoT networks, jammers pose a significant threat as
they can disrupt wireless communications, leading to network
inefficiencies or complete failures. These attacks are particu-
larly critical in healthcare and industrial automation sectors,
where reliable data transmission is essential. Mitigating these
threats or implementing targeted security measures effectively
is easier with accurate localisation of jammers. Localising
the jammer allows for precise countermeasures, such as
adjusting network protocols or physically securing vulnerable
areas. Effective localisation also aids in understanding attack
patterns, improving overall network resilience and security. In
IoT environments, where resources are often limited, precise
jammer localisation is vital for maintaining uninterrupted
operations and ensuring the integrity of critical data flows.

IV. METHODOLOGY

Starting with the methodology, we need to indicate that
our examination focuses on the localisation of a jammer
with the use of time series ML approaches that support
multivariate regression after the identification of jamming

attacks from FLIDS. Before we start with the localisation
strategy, we need to indicate that we used the output of
the FLIDS fuzzy logic system (Jamming Index) as an input
parameter in our approach. Also, we need to suggest that
the JI indicates the presence or level of jamming in a
communication system [28]. Continuing, this section includes
the assumptions, evaluation metrics used to assess the models,
the process and evaluation of feature selection, the technique
employed for optimising hyperparameters in our models, the
system emulation and setup, and the localisation algorithm
used to determine the accurate positions of the jammer.

A. Assumptions

Our investigation considers the following assumptions:
• Some sensors are expected to report data to the desig-

nated sink node, even with the jammer. The data to be
reported includes the Jamming Index and their respective
locations.

• In our investigation, the IoT sensors are not mobile, and
they have predefined locations, and we know accurately
these positions 100%.

• The communication network infrastructure is assumed
to be operational and capable of transmitting data from
sensors to the sink.

• Sensors are assumed to have the necessary hardware
and software components to collect and transmit data
accurately.

• The sink node is assumed to be able to receive, process,
and store data from all sensors effectively.

• The project assumes the availability of power sources or
batteries for the sensors to function continuously.

• Environmental conditions, such as weather or interfer-
ence, are assumed to be within acceptable limits for
sensor operation.

B. Evaluation Metrics Used

In this section, we explain the metrics that are used in our
examination. These are the following [30]:

• Mean Squared Error (MSE) [31]: A metric that
measures the average of the squares of the errors,
essentially the average squared difference between the
estimated values and the actual value. Formula: MSE =
1
n

∑n
i=1(Yi − Ŷi)

2. A lower MSE indicates a closer fit
to the data.

• Mean Absolute Error (MAE) [31]: Represents the
average of the absolute differences between the predicted
values and the observed actual outcomes. Formula:
MAE = 1

n

∑n
i=1 |Yi − Ŷi|. The lower the MAE, the

better the model’s accuracy.
• Root Mean Squared Error (RMSE) [31]: The square

root of the mean of the squared differences between
prediction and actual observation. Formula: RMSE =√

1
n

∑n
i=1(Yi − Ŷi)2. It is a measure of the magnitude

of the prediction error.
• R-squared (R2) [31]: Provides an indication of the

goodness of fit of a set of predictions to the actual
values. Formula: R2 = 1 −

∑n
i=1(Yi−Ŷi)

2∑n
i=1(Yi−Ȳ )2

. It represents
the proportion of variance explained by the model.

• Median Absolute Error [32]: This is the median of
all absolute differences between the actual and the
predicted values. Formula: Median Absolute Error =
median(|Yi − Ŷi|). It is less sensitive to outliers.



Fig. 1: RNN-B-LSTM prediction without the Centroid Ap-
proach Features

• Explained Variance Score [33]: Measures the propor-
tion to which a model accounts for the variation of a
dataset. Formula: Explained Variance = 1 − Var(Y−Ŷ )

Var(Y ) .
A higher score indicates better model performance.

• Average Distance Error [30]: Reflects the
average distance between the predicted and
actual values. Formula: Average Distance Error =
1
n

∑n
i=1

√
(Yi,x − Ŷi,x)2 + (Yi,y − Ŷi,y)2. Lower

values indicate higher precision.

C. Features selection

Feature selection is a critical step in machine learning that
involves choosing the relevant input variables that contribute
most significantly to the model’s predictive power. In our
approach, we start by preparing a dataset containing various
attributes related to network nodes’ communication parame-
ters. From this dataset, we systematically exclude variables
that are less likely to influence the location prediction (such
as the ETX, Retransmissions, and Drop Packets) because
they are related to the Fuzzy Index. When we started our
evaluation, we used the fuzzy index, sensor x location, and
sensor y location as features. We use each case as a one-time
series. However, the RNN-B-LSTM model’s performance
shows notable prediction errors, as indicated by a Mean
Squared Error of 1841.904 and a Root Mean Squared Error of
42.917. With a Mean Absolute Error of 36.842 and a Median
Absolute Error of 37.989, the average prediction deviations
are significant. The low R-squared (0.073) and Explained
Variance Score (0.073) imply limited model effectiveness in
explaining the data’s variability. The Average Distance Error
of 56.555 reflects the model’s limited precision (as shown in
Figure 1).

Thus, we introduced the calculation of two extra features,
which will increase the model’s accuracy. The two features
are the Centroid Value of X and the Centroid Value of y. To
examine the features, we execute multiple feature selection
techniques, such as [34]:

• Fisher Scores [35]: This method evaluates features’
discriminative power by calculating the variance ratio
between different classes to the variance within each
class. A higher Fisher score for a feature indicates
a greater ability to differentiate between classes. The
Fisher Score is given by the following equation:

Fj =

∑c
i=1 ni(µij − µj)

2∑c
i=1 niσ2

ij

(6)

where Fj is the Fisher Score for the j-th feature, c is
the number of classes, ni is the number of samples in
the i-th class, µij is the mean of the j-th feature in the
i-th class, µj is the overall mean of the j-th feature, and
σ2
ij is the variance of the j-th feature in the i-th class.

• Mutual Information Scores [36]: Mutual Information
quantifies the shared information between a feature and
the target variable. It is calculated by assessing how
much knowing one of these variables reduces uncertainty
about the other. Higher mutual information values sug-
gest a stronger relationship between the feature and the
target variable. It is calculated by the following equation:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(7)

where I(X;Y ) is the mutual information between fea-
ture X and target Y , with X,Y representing the feature
and target as random variables, p(x, y) being the joint
probability distribution function of X and Y , and p(x),
p(y) the marginal probability distribution functions of
X and Y respectively.

• Chi-Square Scores [37]: The Chi-Square test measures
the dependence between a feature and the target variable.
It compares the observed occurrences of features against
the expected occurrences if the feature and target were
independent. Higher scores indicate a stronger associ-
ation with the target variable. The Chi-Square score is
calculated by the following equation:

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei
(8)

where χ2 is the Chi-Square score, Oi is the observed
frequency, Ei is the expected frequency under the as-
sumption of independence, and n is the number of
categories or classes.

• Random Forest Feature Importances [38]: In a Ran-
dom Forest model, the importance of a feature is de-
termined by how much it decreases the impurity in the
decision trees. It’s typically measured by the reduction in
Gini impurity or mean decrease in impurity caused by
the feature. Higher importance values indicate a more
significant role in the model’s predictions. The feature
importance is calculated as:

FI =
∑
t∈T

p(t) ·∆i(s, t) (9)

where FI is the feature importance, t represents each
node in the set of trees T within the Random Forest
model, p(t) is the proportion of samples that reach node
t, s denotes the feature being evaluated, and ∆i(s, t) is
the decrease in impurity (e.g., Gini impurity) at node t
attributed to feature s.

Finally, Figure 2 validates the significance of the selected
features shown in Table II for machine learning training,
as evidenced by their high scores across Fisher Score, In-
formation Gain, Chi-Square, and Random Forest Importance
metrics, indicating that they should be retained for effective
model training.

D. Hyperparameters optimisation

Hyperparameters are the configuration settings used to
structure machine learning models. Unlike model parameters
learned during training, hyperparameters are set in advance



Fig. 2: Features Evaluation
TABLE II: Selected Features for ML Training

Type Features
Input1 Jamming Index, Sensor X, Sensor y, Cen-

troid x result, Centroid y result
Output2 Jammer x position, Jammer y position
1 Input Numerical Selected Features
2 Output Numerical Expected Features

and guide the training process. Their optimisation is crucial as
they have a profound impact on the performance of the model.
In our approach, we implement hyperparameter optimisation
using the ”RandomSearch algorithm”, which is an exhaustive
search method that randomly samples the hyperparameter
space and evaluates sets of hyperparameters within predefined
bounds. For the RNN model, hyperparameters such as the
number of units in the RNN layer and the learning rate of
the optimiser are tuned. The number of units determines the
capacity of the network to learn from data, while the learning
rate controls the speed at which the model learns during train-
ing. Similarly, for the CNN model, we tune hyperparameters
like the number of filters and kernel size in the convolutional
layers, along with the learning rate. The number of filters
affects the model’s ability to extract features from the input
data, and the kernel size determines the extent of the receptive
field over which the model perceives patterns. For example,
in our examination, the optimal hyperparameters for the more
accurate approach, which is the RNN-B-LSTM model, were
determined as follows: i) First LSTM layer units: 192; ii)
Dropout rate: 0.2; and iii) Learning rate: 0.006.

E. System Emulation Setup

The system emulation setup assesses a deceptive jamming
attack in an Internet of Things (IoT) network environment,
utilising the Contiki operating system and the Cooja simu-
lator for experimental validation. The experiments leverage
the JamLab suite, a Contiki-based library that facilitates
reproducible interference testing by simulating a jammer that
disrupts network communications with seemingly legitimate
signal packets. In the simulation setup (shown in figure 33),
a grid comprising 25 nodes, including a centrally located
Sink node, is established across a 160 by 160-meter field.
The Sink node is fixed at the centre for all scenarios. Each

3This visualisation where the jammer is at the 12th position is crucial for
understanding the jamming’s spatial effect on the network’s communication
capabilities, offering empirical evidence to evaluate the IoT network’s
defence mechanisms against jamming attacks.

node in the grid is positioned equidistantly at 40 meters from
its neighbours, emulating a network of TelosB nodes with
individual transmission and interference ranges of 50 and 70
meters, respectively. The nodes are configured to send a 48-
byte data packet at regular intervals of 10 seconds, thereby
maintaining a consistent data transmission schedule within
the network.

Fig. 3: The architecture of the emulation system.
Next, to analyse the robustness of the network under jam-

ming conditions, one hundred randomly generated scenarios
are considered based on the jammer’s location relative to the
grid. Note that the Sink node is always at the centre. For each
scenario, 16 different jammer positions are tested and placed
in the grid in random order as cases. The simulation data
extracted from the Cooja Simulator is processed and analysed
through Python and MATLAB for the Jamming Index and the
attack identification using the FLIDS, providing quantitative
insights into the jamming impact on network communication.

Algorithm 2 Jammer Position Identification Using Fuzzy
Logic and ML

1: Input: Sensor data, Fuzzy index
2: Output: Predicted Jammer position (x, y)
3: for each case of one jammer position do
4: Gather Fuzzy index and sensor location from respon-

sive sensors as a time series
5: Initialize list AffectedSensors
6: for each sensor do
7: if Fuzzy index of sensor > 0.5 then
8: Add sensor to AffectedSensors
9: end if

10: end for
11: Initialize TotalX, TotalY, Count to 0
12: for each sensor in AffectedSensors do
13: TotalX += x-coordinate of sensor
14: TotalY += y-coordinate of sensor
15: Count += 1
16: end for
17: Calculate centroid X: CentroidX = TotalX / Count
18: Calculate centroid Y: CentroidY = TotalY / Count
19: Assign CentroidX and CentroidY to all records of the

case
20: Use ML model to predict jammer position X and Y

based on the time series
21: end for



F. Sink Hole/Gateway Localisation Algorithm

This section provides the role of the Gateway in our
investigation. The Gateway gathers the information from the
sensors and executes the localisation decision. Moreover, it
processes the gathered information and executes the local-
isation algorithm shown at Algorithm 2. Note that we use
time series in our case, and each case is a one-time series
to calculate the multivariate regression values of x and y as
outputs.

V. RESULTS AND PERFORMANCE EVALUATION

This section examines, evaluates, and compares the ef-
ficiency of the examined RNN-B-LSTM, TCN, RNN and
CNN ML approaches. Each approach is assessed using the
following figures: i) Training vs validation Loss figure, ii)
Actual metrics vs predicted metrics figure, and iii) 3D Ac-
tual vs predicted Values Figure. Note that we use the 3D
representation of the ”3D Actual vs predicted Values Figure”
to show each ML approach’s prediction errors clearly.

a) RNN-B-LSTM: Starting with the RNN-B-LSTM, as
shown in Figures 4, the RNN-B-LSTM model demonstrates
exceptional performance in predicting location coordinates.
The training and validation loss curves indicate a rapid
convergence to a low-error state, showcasing the model’s
ability to learn from the data effectively. Scatter plots of
the actual versus predicted values for both X and Y coor-
dinates show a tight correlation around the ideal diagonal,
underscoring the model’s precise predictive accuracy. The 3D
scatter plot further reinforces this, with the predicted values
closely clustering around the actual data points in the three-
dimensional space, which reflects the model’s robustness in
handling complex spatial patterns. Overall, the visualisations
confirm the RNN-B-LSTM’s high reliability and accuracy in
localisation tasks within the given context.

b) TCN: Continuing with the TCN, as shown in Fig-
ures 5, the training and validation losses decrease sharply
and plateau early, suggesting quick model convergence. The
scatter plots for both X and Y dimensions reveal a high
degree of correlation between the actual and predicted values,
with the data points clustering tightly along the line of
perfect prediction. However, with a medium accuracy. The
3D scatter plot visualises the model’s predictive performance,
where the predicted points are close but around to the actual
ones, indicating a medium capability of the TCN model to
accurately capture the spatial relationships in the data.

c) RNN: The RNN, as shown in Figures 6, the line
chart illustrates the training and validation loss over multiple
epochs, showing both decreasing sharply before plateauing,
indicative of the model’s learning and generalisation capabil-
ity. The adjacent scatter plots further illuminate the model’s
predictive accuracy by juxtaposing the actual and predicted
values for X and Y dimensions, with points clustered very
close to the diagonal line, denoting high precision. Finally,
the 3D scatter plot offers a visual comparison of actual
and predicted values in a three-dimensional space, where
the proximity of the red (predicted) and blue (actual) points
suggests the model’s high performance in capturing the
complex patterns in the data across multiple dimensions.

d) CNN: The CNN, as shown in Figures 7, illustrates
the training history and prediction accuracy of a Convo-
lutional Neural Network (CNN) model. The training and
validation loss graph exhibits a significant reduction in loss

during the initial epochs, followed by a stable convergence,
indicative of effective learning and generalisation. The scat-
ter plots for the actual versus predicted X and Y values
show medium accuracy, with points clustering close to the
ideal prediction line. The 3D scatter plot reinforced this
accuracy across multiple dimensions, displaying a not-too-
close overlap between the actual (blue) and predicted (red)
values, suggesting the CNN model’s adeptness in capturing
the complexity of the data. Collectively, these figures point
towards a well-trained CNN model with medium predictive
performance.

A. Overall Comparison

As shown in Table III, the RNN-B-LSTM model demon-
strated exceptional precision, as reflected by its Mean Squared
Error (MSE) of 0.006 and Mean Absolute Error (MAE)
of 0.058. The Root Mean Squared Error (RMSE) of 0.081
further underscores its accuracy, complemented by an R-
squared value close to unity at 0.999, indicating an almost
perfect fit. The Median Absolute Error (Median AE) was
notably minimal at 0.040, and the Explained Variance Score
was equally high, matching the R-squared value. The model’s
Average Distance Error (Avg Dist Error) in meters stood at a
mere 0.094 m, suggesting its robustness in localisation tasks.
Additionally, the Temporal Convolutional Network (TCN)
Model, in contrast, showed an MSE of 42.180 and an MAE
of 5.257, indicating a less precise but still notable perfor-
mance. Its RMSE reached 6.494, with an R-squared value
of 0.979, which, while lower than the RNN-B-LSTM, still
demonstrated substantial model accuracy. The Median AE at
4.649 and an Explained Variance Score of 0.989 suggested
good predictive capabilities, though with a higher average
Dist Error of 8.234 m, indicating a greater deviation from
actual values than the RNN-B-LSTM model. Similarly, the
RNN Model presented an MSE of 0.325, an MAE of 0.096,
and an RMSE of 0.570, all of which denote a performance
reduction when compared to the RNN-B-LSTM. However,
its accuracy remained high, with an R-squared value of 0.999
and a Median AE of 0.054. The Explained Variance Score
was consistent with the R-squared value, and the Avg Dist
Error was 0.152 m, which was larger than the RNN-B-
LSTM but still indicated a respectable level of precision.
Moreover, the Convolutional Neural Network (CNN) Model
recorded an MSE of 21.928, an MAE of 2.994, and an
RMSE of 4.682, reflecting a moderate accuracy level. Its
R-squared value of 0.989 and Explained Variance Score of
0.989 suggested a reliable predictive ability, albeit less than
the models above. The CNN Model’s Median AE was 1.864,
and the average distance error was 4.581 m, marking it as
less accurate regarding average distance but still adequate for
specific localisation applications.

Overall, each model’s performance metrics exhibit dis-
tinctive strengths and weaknesses, with the RNN-B-LSTM
model demonstrating superior precision and the CNN Model
balancing accuracy and computational efficiency. This com-
prehensive performance metric assessment allows for an
informed selection of the most suitable model based on the
specific requirements of the localisation task at hand.

VI. CONCLUSIONS AND FUTURE WORK

The study presented here is a significant stride towards
fortifying the Internet of Things (IoT) against the pervasive
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Fig. 4: RNN-B-LSTM Examinations

(a) Training Vs Validation Loss (b) Actual Vs Predicted (c) 3D Actual Vs Predicted Values

Fig. 5: TCN Examinations

(a) Training Vs Validation Loss (b) Actual Vs Predicted (c) 3D Actual Vs Predicted Values

Fig. 6: RNN Examinations

(a) Training Vs Validation Loss (b) Actual Vs Predicted (c) 3D Actual Vs Predicted Values

Fig. 7: CNN Examinations
TABLE III: Performance Metrics of ML Models

Model MSE MAE RMSE R-Squared Median AE Explained Variance Average Distance Error (ADE) (in m)
RNN-B-LSTM 0.006 0.058 0.081 0.999 0.040 0.999 0.0940
TCN Model 42.180 5.257 6.494 0.979 4.649 0.989 8.234
RNN Model 0.325 0.096 0.570 0.999 0.054 0.999 0.152
CNN Model 21.928 2.994 4.682 0.989 1.864 0.989 4.581

threat of jamming attacks, integrating advanced machine
learning models with a Fuzzy Logic-based Intrusion Detec-
tion System (FLIDS) for detection and precise localisation
of different threats. Our findings underscore the RNN-B-

LSTM model’s superior accuracy in jammer localisation
within IoT networks, showcasing its potential in environments
where precise localisation is critical, such as healthcare and
industrial automation. Its low MSE and high R-squared value



highlight the model’s outstanding performance, making it a
reliable choice for critical IoT applications.

Future work should focus on refining the TCN and RNN
models to improve their localisation accuracy, exploring hy-
brid models that could combine the strengths of RNNs and
CNNs, and further reducing the average distance error for all
models to bolster precision. Moreover, continuous advance-
ments in machine learning algorithms and their application in
IoT will be essential in staying ahead of increasingly sophis-
ticated jamming techniques. Moreover, in future research, it
would be valuable to explore the implications of introducing
uncertainty into the node locations or considering scenarios
where one of the nodes possesses highly erroneous position
information, as this would shed light on the robustness and re-
liability of the proposed system under real-world conditions.
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