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Abstract—The growing adoption of the Metaverse raises crit-
ical challenges in real-time crowd sensing, where traditional
vision-based systems struggle to balance high-resolution mon-
itoring with user privacy. Cameras and other optical sensors,
while effective in tracking movement and interactions, inher-
ently capture personally identifiable information, creating ethical
and legal concerns. This paper explores the use of millimetre-
wave (mmWave) radar technology as a privacy-preserving, high-
resolution solution for real-time crowd sensing in Metaverse
applications. Recognising the limitations of traditional moni-
toring methods, such as visual surveillance and mobile-based
tracking, this study presents a simulation-based framework for
evaluating mmWave-enabled visitor tracking within a museum-
style environment. A MATLAB-based simulator models realistic
human mobility and sensor data, incorporating error models
obtained from an experimental precision analysis of mmWave
sensors. A combination of DBSCAN and K-Means clustering
is then applied to estimate crowd formations, density, and
mobility flows. Results demonstrate the effectiveness of mmWave
in identifying dynamic crowd behavior while preserving user
anonymity, highlighting its potential for immersive digital twins,
XR experiences, and intelligent environment management in
Cyber-Physical-Social Systems that underpin the Metaverse.

Index Terms—mmWave Sensing, Metaverse, Clustering,
Crowd monitoring

I. INTRODUCTION

Crowd management and control in public and private spaces
represents a critical area of interest across fields such as
urban planning, emergency response, event organization and
coordination, and the development of smart infrastructures.
This growing attention is typically driven by several key
factors, including the need for efficient navigation in complex
environments, the demand for applications that enhance user
experience in shared spaces, and rising concerns over public
safety and the risks associated with dense crowds. Traditional
crowd monitoring systems such as visual surveillance (e.g.,
CCTV), infrared sensors, and mobile device tracking usually
raise privacy concerns, could be sensitive to environmental
conditions and typically depend on user participation or device
presence.

Crowd control also appears to have an important and
distinctive role in the Metaverse concept, which is highly
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integrated with real-world environments through eXtended
Reality technologies (XR - the umbrella term encapsulating
augmented, virtual and mixed reality applications, software
and hardware technologies). Often regarded as the next signif-
icant technological evolution, the Metaverse is conceptualized
as a seamless integration of physical and virtual realities within
unified digital environments, enabling people to engage, col-
laborate, and interact within immersive, interconnected spaces
with applicability opportunities across multiple domains [1],
[2].

Building on this vision, understanding and managing human
presence within shared hybrid spaces becomes essential to
creating responsive and intelligent Metaverse applications. As
users navigate physical spaces augmented by virtual layers,
real-time insights into crowd behavior can support adaptive
system behavior, safety monitoring, and efficient resource
allocation, among other capabilities. Crowd sensing, therefore,
becomes a crucial capability for achieving dynamic and intel-
ligent user-centered interactions in Metaverse applications that
accurately reflect real-world complexity.

In this context, having knowledge about crowd flows and
densities has multiple benefits. Within the Metaverse, crowd
sensing can serve as a valuable tool for gathering data re-
lated to user behavior and environmental dynamics through
capturing information such as users’ physical locations and
interactions with physical spaces and digital objects to support
real-time modelling of Metaverse applications with accurate
representations, enhanced interactivity, and adaptive system
responses [3]. For example, crowd sensing can offer enhanced
spatial awareness in digital twin applications, enhancing real-
ism in XR interfaces; it has the potential to enable or facilitates
contextual adaptation in virtual overlays; for instance, in XR-
aided retail or museum environments it could enable adaptive
content delivery or direct users in less congested areas; it
provides a safe and immersive user experience in public
XR applications by preventing physical overlaps, collisions
or bottlenecks; it can support hybrid event coordination and
management in smart crowded environments synchronizing
the virtual and physical crowd movement and many other
applications. This paper presents an approach that leverages
millimeter-wave (mmWave) sensing to non-intrusively local-
ize users within a public environment—specifically, an art



gallery—and to identify large visitor clusters and character-
ize their flow. Such information is valuable for Metaverse
applications aiming to enhance visitor experiences through the
integration of robots, digital twins and/or other technologies.

The remainder of this paper is organized as follows: in Sec-
tion II the recent related works in crowd sensing using different
technologies are presented, highlighting some of the most
promising approaches focusing on works that use mmWave.
Section IV describes the methodology and setup used for the
mmWave precision analysis experimentation and simulation
development, including the clustering techniques. Section V
presents the simulation results for a typical museum-style
environment, and Section VI, provides a critical discussion
and conclusion.

II. RELATED WORK

A crowd is defined as a collective situation where individ-
uals gather at a specific location within a certain time frame
and a shared purpose [4]. Different types of crowds exist and
vary based on context, and are typically classified according
to the nature of the situation, such as casual gatherings,
protests, or scheduled events [4]. Common characteristics
used to describe crowd scenarios include the participants’
intentions, the crowd’s dynamics, size and density, as well
as its location and the duration of the gathering [5]. A
comprehensive review applicable to crowd analysis of public
transportation systems can be found in [6]. It is a well-
established fact that overcrowding significantly decreases user
satisfaction, particularly in public places such as museums,
galleries, hospitals, shopping malls, and transportation hubs,
as well as the safety risks and operational deficiencies that
accompany it. Various technologies have been proposed and
used over the years to monitor and control crowds, but many of
those come with concerns regarding intrusiveness and privacy
implications. For instance, infrared counters and Wi-Fi analyt-
ics have been used to regulate visitor flows in museums and
art galleries. Another example is the use of Real-time location
services (RTLS) and Radiofrequency Identification (RFID), as
well as thermal imaging have been used in hospital Emergency
Rooms (ER) and waiting areas to optimize patient movement,
ensure distancing and facilitate infection control. In retail
and transportation applications, crowd-aware systems utilize
conventional cameras, complemented by video analytics, as
well as Bluetooth or Ultra-Wideband (UWB) tracking. Most
of these applications include the identification of people, which
is prohibited or strictly governed by regulations like HIPAA
and GDPR, or require that the users hold specific devices. The
following table summarizes the various technologies available
for crowd control, highlighting their advantages and disadvan-
tages. It is for these reasons that millimeter-wave (mmWave)
sensing emerges as a promising solution for crowd monitoring.

mmWave is a communication technology that has started
being used in modern communication systems such as Wi-
Fi (e.g., IEEE802.11ad), while it is planned to be used in 5G
(and beyond) communications due to its flexibility to use wider
bandwidths and hence its strong potential in achieving much

TABLE I: Comparison of Crowd Sensing Technologies

Technology Advantages Limitations

Video Cameras High resolution, rich visual
data

Intrusive, privacy issues,
sensitive to lighting
conditions

Infrared Sensors Simple, low-cost, low
power consumption

Limited range, unable to
distinguish individuals in
groups

WiFi/Bluetooth Utilizes existing personal
devices, non-visual

Requires users to carry de-
vices, raises privacy con-
cerns

LiDAR Accurate spatial and depth
sensing, good for open
spaces

High cost, affected by re-
flective or occluded surfaces

mmWave Radar Privacy-preserving, works
in darkness and clutter,
tracks multiple targets

Complex signal processing,
less intuitive output

Thermal Cameras Effective in low light, health
monitoring use cases

Low spatial resolution,
moderate privacy
intrusiveness

higher data rates and capacity. mmWave systems typically
operate in frequencies between 26 and 300 GHz. Their very
large availability of bandwidth which leads to fine timing (and
hence ranging) resolution, and together with the ease of using
phase array antennas (at those frequencies) that enable the
estimation of the phase (and thus the angle) could be used for
achieving decimeter 3D positioning accuracy or better [7]–
[9]. When used in positioning, mmWave is typically referred
to as sensing, mostly because of its radar-like operation, which
facilitates the localization of passive device-free targets. A
mmWave sensor emits high-frequency electromagnetic waves
that bounce off surrounding objects and return as echoes
whose time and angle of arrival can be measured. This
knowledge enables estimation of the position of targets in
motion since a fundamental requirement is that these targets
generate Doppler shifts. On the other hand, such technology
gives rise to various limitations and challenges that are not
faced with conventional transmitter-receiver technologies, such
as UWB, Bluetooth, and Wi-Fi. These echoes can become
mixed together in complicated environments, making it diffi-
cult to differentiate specific objects. This becomes especially
challenging when using multiple sensors and is particularly
critical in applications such as indoor people activity tracking
or autonomous vehicle navigation, where the ability to discern
and track multiple objects with precision is crucial.

However, the application of many of these technologies
raises concerns regarding privacy, environmental dependency,
and limited scalability. We highlight some of the most promis-
ing approaches, focusing on works that use mmWave.

A. Crowd Sensing using different Technologies

In the highly cited vision-based work reported in [10],
the authors utilize overhead surveillance cameras to detect
the motion of users, and then employ a Long Short-Term
Memory (LSTM) recurrent neural network model that learns
both individual motion patterns and their interactions with
nearby individuals. The proposed model incorporates a social
pooling layer that helps predict future paths by accounting for
human-human interactions in shared crowded spaces. Various



other video-surveillance solutions for crowd analysis, includ-
ing density estimation and behavior recognition using deep
learning techniques, are reviewed in [11].

In [12], the authors combine LiDAR scans with camera
imagery and utilize filtering and fusion algorithms to control
a servo-based swinging platform, enabling accurate real-time
tracking of humans in enclosed, crowded areas. Laser-based
people tracking is not new, as works exist in the literature
since the early 2000s. One such work is the one reported
in [13] where a laser-based dense crowd tracking method is
proposed that uses a stable feature extraction method based
on accumulated distribution of successive laser frames trying
to detect paterns of rhythmic leg swings to extract each
persons legs followed by a region coherency property to
construct an efficient measurement likelihood model and then
by using a combination of independent Kalman filter and Rao-
Blackwellized Monte Carlo data association filter (RBMC-
DAF) detects the presence of people. Although laser-based
tracking has proven to be an accurate approach, it is a complex
and expensive solution that is also environmentally sensitive
(e.g., dark conditions, fog, humidity, and reflecting mirrors).

The work reported in [14] proposes a crowd monitoring
system featuring Wi-Fi sensors by means of a small number
of automated counting systems and uses data fusion aiming
to estimate the pedestrian flows based on real-time Wi-Fi
traces at one sensor location, and historic flow rate and Wi-
Fi trace information gathered at other sensor locations. Wi-Fi
is combined with Bluetooth in [15] to develop an intelligent
transportation system that monitors and classifies pedestrian
and cyclist activity traffic. Although this work appears solid
and interesting, it raises privacy concerns due to the require-
ment to capture MAC addresses.

Lastly, thermal imaging emerged as another possible solu-
tion in crowd analysis, addressing some limitations associated
with conventional RGB imaging, such as privacy concerns
and environmental challenges like darkness and fog. For
instance, the study reported in [16] utilizes a thermal imaging
camera (TIC) combined with a deep learning model based
on the YOLOv4 algorithm to detect humans during emer-
gency evacuations in low-visibility, smoke-filled fire scenarios.
Nevertheless, thermal imaging still has certain limitations
related to environmental conditions, particularly ambient heat
interference, and does not entirely eliminate privacy concerns.

B. Crowd Sensing using mmWave

Over the last few years, works have started appearing in the
literature that make use of the mmWave technology for crowd
sensing, leveraging on the benefits that this technology can
bring with regard to the concerns regarding privacy, accuracy,
responsiveness and environmental sensitivity. These works can
be grouped into two categories: (1) crowd density estimation
and (2) human activity recognition.

1) Crowd Density Estimation: The authors of [17] propose
a radar-based people counting pipeline to detect individuals
moving together as a single group, based on the comple-
mentary combination of a tracking algorithm and a feature-

based classifier that estimates the number of people in each
group tracked within the scene of interest. It demonstrates that
a combination of features extracted from the range–azimuth
domain using a mmWave radar yields robust results. Similarly,
the authors of [18] implemented a system using millimeter-
wave radar combined with a convolutional neural network
(CNN) to detect and classify human behavior.

2) Human Activity Recognition: Human activity recogni-
tion, also known as movement pattern analysis, has been
shown to be facilitated through mmWave technology. For
instance, the work reported in [19] implements a system that
utilizes commercial, off-the-shelf radar to obtain sparse point
clouds. It then employs a sliding time window to accumulate
these clouds, generating a voxelised representation that serves
as input to human activity classifiers, which differentiate
between five different activities. In [20], the authors introduce
“POI-GAN”, a novel approach tailored to forecasting pedes-
trian trajectories in service-centric settings. Pedestrian trajec-
tory data is obtained from the HLK-LD6001A-60G millimeter-
wave radar, and proposes a prediction method that leverages
the Point of Interest (POI) model and the field of view angle
model. A comprehensive survey that discusses the evolving
field of human behavior analysis using radar and LiDAR is
reported in [21].

III. WHY MMWAVE-BASED CROWD SENSING

Having reviewed the literature and considering the spe-
cific requirements that crowd sensing imposes regarding pri-
vacy, environmental robustness, and accuracy, it appears that
mmWave emerges as a promising solution. Unlike technolo-
gies such as cameras, Wi-Fi/Bluetooth, which could lead to
identification of users, mmWave is considered to be positioned
at the lower end of the intrusiveness spectrum because it does
not collect visual or user-specific data, making it suitable
for sensitive areas (e.g., hospitals, schools) and compliant
with strict privacy regulations. Considering crowd sensing
applications, mmWave holds distinct advantages over other
traditional approaches: (1) offers enhanced spatial resolution
as it could potentially distinguish better between individuals
spaced closely together, which is a challenge for infrared or
thermal sensors, (2) offers environmental and visual robustness
as it can operate effectively in a wide range of environmental
conditions including darkness, smoke, and fog, (3) it is non-
Intrusive and privacy-Compliant since mmWave radars do
not capture identifiable information, (4) has high refresh rate
enabling real-time tracking since mmWave sensors can detect
movement and update positions in real time, essential for
dynamic crowd scenarios, (5) has fairly low infrastructure
requirements given that a single mmWave unit can cover a
relatively wide area, reducing the number of sensors required
compared to camera-based systems and (6) has low Power and
compact design as mmWave modules are energy-efficient and
can be embedded into battery-powered IoT devices. In fact,
mmWave communication can be applied to enable and support
Metaverse applications [22], [23], as it allows high-speed
data transfer [24], making it particularly well-suited for the



intensive bandwidth and low-latency demands of immersive
Metaverse experiences [22].

A. Potential Application Examples in Metaverse Systems

In Metaverse applications, particularly those involving
crowd sensing and visualization, mmWave technology offers
the opportunity to capture and transmit fine-grained spatiotem-
poral data in real-time, enabling dynamic and responsive
representations of user behavior within physical settings and
in virtual environments. An example of a Metaverse appli-
cation where this is highly relevant is the Intelligent Reality
Virtual Museum prototype, developed within the context of a
Cyber-Physical-Social Metaverse system under development
at [Research group and relevant citations omitted for peer
review process]. This system combines advanced AI and Large
Language Models (LLMs) with Digital Twins, Robotics, and
gaming technologies to deliver immersive cultural heritage
experiences that seamlessly blend the real and digital worlds.
It serves as an example of a CPSS Metaverse application,
demonstrating the convergence of multiple emerging tech-
nologies to transform how cultural heritage is experienced,
preserved, and interacted with in the Metaverse. In such an
example system, mmWave technology can be used to support
non-intrusive tracking of visitor movement and density within
the digital twins of physical spaces, helping to establish and
maintain real-time synchronization between the physical and
virtual environments. This capability enables the generation
of heatmaps to visualize visitor flow and highlight areas of
interest within a physical space, which can be used to adapt
the virtual experience dynamically. Moreover, the system can
leverage this data to dispatch a robotic guide to specific
locations within the physical or virtual museum, offering
contextual assistance or information to visitors based on their
position and behavior.

Another potential application example is a project devel-
oped by (Citation and group information removed for peer
review), focusing on indoor air quality monitoring by non-
experts. The project utilizes Virtual Reality and digital twins
to enhance spatial understanding and support the analysis of
indoor environmental conditions. In this project, ecological
sensors were deployed within a mixed-use industrial office
to capture historical data on air quality metrics. The system
infrastructure facilitates continuous data collection and stor-
age, allowing users to visualize the physical space through
2D and VR-based digital twin interfaces. This supports data
visualization, spatial awareness, user immersion, and intuitive
data exploration, enabling non-expert users to perform trend
analysis and make informed decisions related to air quality
and building performance. In such types of systems, mmWave
technology can be used to generate real-time heatmaps to
visualize human presence and movement patterns within the
indoor environment. When coupled with sensor readings, this
can help identify correlations between human activity levels
and variations in air quality, helping to identify usage-based
inefficiencies or ventilation issues to further enhance decision-

making and support more targeted interventions for improved
building management strategies.

IV. METHODOLOGY

Considering the potential of mmWave technology for prac-
tical applications within Metaverse environments, particularly
for crowd sensing and spatial analytics, and to facilitate
the investigation and development of crowd estimation al-
gorithms, a demonstration scenario simulating a physical
museum/gallery-style environment is employed. We developed
a MATLAB-based simulator that models visitor behavior in
these environments and generates synthetic mmWave sensor
data corresponding to pre-defined sensor positions. This data is
generated pseudorandomly for each simulated visitor position
based on an error model derived from a set of mmWave
measurements conducted to characterize and analyze the pre-
cision of a typical mmWave sensor in terms of range, azimuth,
elevation, and the number and spread of echoes detected when
tracking human targets moving within its field of view.

A. Precision Analysis
The precision analysis was conducted to characterize the

ranging and angular capabilities of the mmWave sensors
used in the simulator and extract the range, azimuth and
elevation errors at different distances and orientations of the
target. In this experimental analysis, a Texas Instruments
IWR1843BOOST sensor was placed at a fixed location and
range measurements were collected on a straight line (1 to 8
m) every 1 m with a 1.7 m-tall man standing away from it,
making minor movements with his hands to generate Doppler
shifts and enable the detection. To characterize the ability of
the sensors to conduct range measurements at different angles,
the orientation of the sensor was systematically varied from 0
to 60 degrees in the azimuth plane and from 0 to 45 degrees in
the elevation plane (15o step in both cases). At every point, the
sensor was set to receive measurements for 5 seconds while
the target was moving, and after excluding outliers (using
DBSCAN with low ε), the mean values of the range, elevation
and azimuth readings are recorded. Using these three values,
we estimate the 3D position of the target and we compare it
to the true position to calculate the 3D Euclidean error.

Fig. 1: Precision Analysis Results

Figure 1 shows the 3D Euclidean error achieved under
different orientations of the sensor with respect to the target



and at different distances from the sensor. The evaluation
revealed a varying level of accuracy contingent on azimuth and
elevation angles up to a maximum distance of 8m. Beyond 8
m the sensor was not able to detect the target. When the sensor
was aligned at 0 degrees azimuth, it demonstrated exceptional
3D accuracy, which was slowly degrading as the distance and
elevation from the target were increased. As it was expected, at
large elevation angles (e.g. 45 degrees) and at long distances,
the sensor was failing to provide a measurement. This is
indicated by the gaps in the surface plots in the figure. The
contour plots at the bottom of each surface plot indicate the
range of Distance/Elevation values for which the error is below
an intuitively-selected accepted 3D positioning error (0.5m).
As expected, the positioning accuracy appears to deteriorate
more rapidly as the azimuth angle increases, limiting the
usability and reliability of the sensors at very low elevation and
azimuth angles. In a scenario where multiple sensors are used,
one could use the range, azimuth and elevation measurements
as a measure of the reliability of the single-anchor position
estimation and either use or discard the particular anchor from
the entire positioning algorithm.

The output of this precision analysis is a data structure
that contains the range, azimuth and elevation errors of the
measurements at different ranges and orientations, and this is
fed as input to the mmWave Data Generator (see section IV-B)

B. Mobility and mmWave Simulator

As noted above, a custom-developed MATLAB-based sim-
ulator was developed to model visitor 2D or 3D movements
in art-related bounded environments and generate data from
mmWave sensors defined in such environments. The simulator
is based on the assumption that exhibits in museums and art
galleries are typically arranged to guide visitors through a
comfortable route and that they are reasonably spaced apart
from each other. It assumes that visitors form clusters in front
(in the case of paintings) or around the exhibits (for artefacts
or sculptures), and that they move from one exhibit to another
either as groups or individually. It is assumed that atop each
exhibit, there is at least 1 mmWave sensor that generates
mmWave data for each user roaming in front of it.

Given these requirements, the simulator accommodates both
clustered and unclustered users (defined by an unclustered
ratio), each exhibiting distinct mobility behaviours. Users are
assigned specific mobility types—restricted within clusters,
free movement, or movement toward other clusters. The simu-
lator enforces constraints such as minimum distances between
clusters and users, and allows for customisable parameters
including the total number of users, cluster configurations, and
simulation duration. This flexibility also makes it applicable
for studies in wireless communication networks, smart city
planning, and IoT environments.

To offer flexibility in supporting various user behaviours
and spatial constraints, enabling detailed analysis of mobility
patterns and cluster dynamics, the input to the simulator is:

• use 3D: Boolean flag for 3D or 2D simulation

• bounding box: 2D or 3D environment dimensions of the
entire space, e.g., [Xmin, Xmax;Ymin, Ymax;Zmin, Zmax]

• sim time: Total simulation time (seconds)
• tick: Time step (seconds)
• NU: Total number of users (fixed integer)
• define clusters explicitly: Boolean flag for explicit def-

inition or random generation of clusters
• NC min, NC max: Minimum and maximum number of

clusters (integers)
• min users per cluster, max users per cluster: Mini-

mum and maximum number of users allowed per cluster
• cluster radius min, cluster radius max: Minimum

and maximum radius for each cluster
• min cluster distance: Minimum allowed distance be-

tween cluster centers
• min user distance: Minimum allowed distance between

any two users
• pedestrian velocity: User movement speed (m/s)
• unclustered ratio: Fraction of users not assigned to any

cluster (0 to 1).
• mobility distribution: Defines the mobility behaviour of

users: 0 = restricted within a cluster, 1 = to move arround
freely, 2 = move between clusters. These are defined as
percentages (e.g. 80% restricted, 5% free and 15%: move
between clusters)

The output of this mobility model consists of user trajecto-
ries arranged in a 3D array [NU ×D × T ], representing the
positions of each user over time, which serves as input for the
mmWave measurement generator. A typical snapshot of this
mobility model is shown in Figure 2.

Fig. 2: Typical Mobility Model Output for a preset set of
visitor clusters

For each user position, a cloud of measurement points
is generated around the true user location, corresponding to
reflections from the user’s body. The radius (σ) of this cloud
is determined based on the user’s cross-sectional area; our
precision analysis has indicated a typical value of sigma for



the human body of 0.5 m. For each reflection point within this
cloud, the true range, azimuth, and elevation relative to each
mmWave sensor in the environment are calculated as follows:

rangetrue = ∥psensor − ptarget∥
azimuthtrue = arctan 2(yrel, xrel)

elevationtrue = arcsin

(
zrel

rangetrue

)
where (xrel, yrel, zrel) is the relative position vector from the
sensor to the reflection point. Subsequently, measurement
errors corresponding to these true measurements (rangeerr,
azimutherr, elevationerr) are obtained using the previously
conducted precision analysis, employing interpolation when
necessary. Finally, the simulated measurements are generated
by adding normally distributed noise with zero mean and
standard deviation equal to these extracted errors to the actual
(true) measurement values, as follows:

rangemeas = rangetrue +N (0, rangeerr)

azimuthmeas = azimuthtrue +N (0, azimutherr)

elevationmeas = elevationtrue +N (0, elevationerr)

Given the simulated measurements, the spherical coordi-
nates are calculated.

r = rangemeas

θ = azimuthmeas (in radians)
ϕ = elevationmeas (in radians)

The corresponding Cartesian coordinates relative to the
sensor are computed as:

xrel = r · cos(ϕ) · cos(θ)
yrel = r · cos(ϕ) · sin(θ)
zrel = r · sin(ϕ)

It is important to note that these Cartesian coordinates
correspond to the body frame coordinate system of each
sensor. To properly determine the coordinates of the point of
reflection within the room’s coordinate plane, it was essential
to align the sensor’s coordinate system (body frame coordinate
system) with that of the room (Local Coordinate System).
Achieving this alignment involves a series of calculations that
account for the sensor’s yaw, pitch, and roll. These adjustments
were critical in ensuring that the sensor’s data corresponds
accurately to the room’s coordinate plane, allowing for reliable
3D positioning. Assuming that the anchor is first rotated by an
angle ψ around the z-axis (yaw), then by an angle θ around y-
axis (pitch) and finally by an angle ϕ around the x-axis (roll)
the 3 ×3 rotation matrix R = Rz ·Ry ·Rx.

R =
[ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

] [
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

] [ 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

]
With reference to Figure 3 and considering that body-frame

measurement from a sensor positioned at A = [xayaza] is

Prel = [xrelyrelzrel] then the local coordinates P = [xyz] of
the target can be calculated using:

P = [R · PTrel]T +A

Fig. 3: Body Frame to Local Coordinates Conversion

The generator iterates through all users in the environment
and generates a combined set of reflection points for each
user, as well as for all sensors within the environment, per
time instance. This will then form the input to the clustering
algorithm, which will identify and group/cluster the visitors.

In addition to the mobility information, the generator takes
as input a structure containing all the sensors in the environ-
ment, which are defined in terms of their Cartesian coordinates
in the global coordinate system and their orientation (yaw,
pitch, roll), the precision analysis data, the maximum number
of scatter measurements per user per sensor and the sigma
(σ) of the measurement reflection points as defined earlier. A
typical output of the mmWave Generator for the users shown
in Figure 2 is shown in Figure 4.

Fig. 4: Typical mmWave Generator Output for the users shown
in Figure 2 and 8 mmWave sensors



C. Clustering

In data analysis, clustering algorithms play a pivotal role
in interpreting complex datasets. For this investigation, we
utilise a combination of DBSCAN and K-means algorithms
to identify clusters of users, estimate their centres and radii.

1) K-Means Clustering: K-Means is a centroid-based clus-
tering algorithm that partitions the data into K distinct, non-
overlapping clusters. The algorithm iteratively adjusts the
centroids to reduce the total variance within each cluster [25].
It requires the number of clusters (K) to be specified in
advance, which is a key parameter that directly influences
the clustering outcome, as it determines the granularity of the
clustering. A value that is too low may merge distinct groups
into a single cluster. At the same time, a value that is too
high may lead to overfitting, identifying clusters within what
is essentially noise, splitting cohesive clusters into multiple,
smaller ones.

To overcome the limitation of having to specifically define
the value of K we deploy the silhouette method to determine
its optimal value. For each data point i, the silhouette score
s(i) is defined as:s(i) = b(i)−a(i)

max{a(i),b(i)} , where: a(i) is the
average distance between point i and all other points in the
same cluster (intra-cluster distance), and b(i) is the minimum
average distance between point i and all points in any other
cluster (nearest-cluster distance). The silhouette score ranges
between: s(i) ≈ 1: point is appropriately clustered, s(i) ≈ 0:
point lies between two clusters, and s(i) < 0: point may have
been assigned to the wrong cluster. The average silhouette
score s̄ across all data points provides a measure of the
overall clustering quality. The optimal number of clusters K∗

is selected as: K∗ = argmaxK s̄.
2) DBSCAN Clustering: DBSCAN (Density-Based Spatial

Clustering of Applications with Noise) is a density-based clus-
tering algorithm. It groups up points that are closely packed
together, marking as outliers any points that lie alone in low-
density regions. This method is effective for data with clusters
of similar density [26], and its algorithm effectiveness relies
heavily on two parameters: epsilon (ε) and minimum cluster
size (MinPts). (ε) sets the neighbourhood radius around each
centroid, dictating what is considered close enough to form
a cluster, while MinPts defines the minimum number of
points a cluster needs, distinguishing core points (points in
dense areas) from noise (points in sparse areas). Balancing
ε and MinPts is essential to ensure the correctness of the
result. Capitalising on the ability of this method to remove
outliers, we use it as a pre-clustering step, prior to the K-
means algorithm, to clean the data from any points that most
likely are not part of clusters. A low value of ε is used in this
case.

V. RESULTS

In this section, we present the results of a simulation
conducted in a typical art gallery environment. The simulated
space is a 25 × 25m square area featuring 14 paintings
displayed along the surrounding walls and on a central wall
located in the middle of the gallery, as illustrated in Figure 5a.

A mmWave sensor is deployed 20 cm above each painting,
oriented to face the space in front of the painting and tilted
downward by 15◦.

The scenario under investigation involves 250 visitors mov-
ing throughout the gallery, forming clusters approximately
2.5m in front of each painting. The number of individuals
per cluster is randomised between 5 and 20, with each person
spaced at least 30 cm apart. The maximum diameter of each
cluster is assumed to be 1m greater than the width of the
corresponding painting. The simulation also assumes that 5%
of visitors remain unclustered and may appear anywhere
within the gallery space, while the rest are restricted to stay
within their cluster. Figure 5a presents a snapshot of this
scenario, showing users forming clusters with centres depicted
as red spheres and their corresponding diameters indicated by
black circles around each centre.

To generate the mmWave data, the simulation assumes
that each user produces between 5 and 10 measurements
(echoes) originating from different locations on their body,
with an average spatial spread of 0.5 m. Figure 5b presents
the generated sensor data along with the results of the K-means
clustering algorithm, where the maximum number of clusters
K was set to 20. The black spheres represent the estimated
cluster centres, while the black circles around them illustrate
the approximate diameter of each cluster. Although 14 clusters
were identified (most of them correctly positioned), it appears
that users located in front of sensors 5 and 6 were grouped
into a single cluster, whereas two clusters were detected in
front of sensor 2, where only one was expected. To address
this issue, a filtering step was introduced using the DBSCAN
algorithm to remove outliers (ε = 1, MinPts = 8) before
running the K-means algorithm. The new results are shown in
Figure 5c.

The first scenario is rather unrealistic, as it is unlikely that
all gallery visitors remain stationary and clustered in front
of the paintings without moving around. To simulate a more
dynamic and realistic environment, and to evaluate the applica-
bility and effectiveness of our approach, the simulator was run
again with increased user variability. Specifically, 15% of users
were initialised as unclustered, 10% were allowed to move
freely within the gallery, 30% moved between clusters, and
the remaining users stayed within their assigned clusters. All
visitors were assumed to walk at a speed of 0.5 m/s. The sim-
ulation was run for 1 minute, resulting in the user distribution
shown in Figure 5d. Due to the increased spread of users across
the gallery space, the resulting mmWave measurements were
not easily clustered using the same parameters and algorithms
as before. To mitigate this, the sensors were reconfigured
to discard measurements with azimuth angles beyond ±45◦,
elevation angles beyond ±15◦, and distances greater than 7 m.
The mmWave data obtained after this post-processing step,
without outlier removal, is shown in Figure 5e. Although this
produced a reasonably accurate estimation of cluster positions,
applying the DBSCAN algorithm for outlier removal further
improved the results, as illustrated in Figure 5f.

Beyond identifying clusters, the proposed solution can mon-



(a) Scenario 1: Visitors clustered in front of
each painting

(b) Scenario 1: mmWave Measurements (c) Scenario 1: Filtered mmWave Measure-
ments

(d) Scenario 2: Visitors clustered in front of
each painting

(e) Scenario 2: mmWave Measurements (f) Scenario 2: Filtered mmWave Measure-
ments

Fig. 5: Comparison of visitor clustering and mmWave measurements.

itor user mobility over time and extract valuable insights into
visitor distribution, artefact popularity, and areas prone to
overcrowding. This information can help management make
informed decisions about redistributing artefacts to enhance
visitor satisfaction and overall experience quality. To demon-
strate this concept, we developed a routine that divides the
virtual space into cells of predefined size and accumulates
the occurrences of mmWave measurements recorded within
each cell over a specified period and plots a normalised.
heatmap. An example of such a heatmap is presented in Figure
6, illustrating user mobility in Scenario 2 over a 60-second
period.

VI. CONCLUSION AND DISCUSSION

The use of mmWave technology in Metaverse systems
presents significant potential for advancing how virtual and
physical spaces are synchronized and experienced. The tech-
nology’s’ potential for high spatial resolution, low latency,
accuracy across various lighting conditions, and the preserva-
tion of user privacy due to its non-reliance on visual imaging
can enable real-time, non-intrusive crowd monitoring that
can enpower a wide range of Metaverse applications ranging
from digital twins of public spaces to interactive exhibitions,
simulations, and smart city planning tools.

The deployment of mmWave-enabled crowd sensing ad-
dresses practical challenges in Metaverse development, such
as maintaining synchronicity between physical and virtual en-
vironments with high scalability that can support the develop-
ment of Cyber-Physical-Social Systems within the Metaverse.

Fig. 6: Users Mobility Heatmap over 60 seconds

Our findings confirm that mmWave sensors could deliver
reliable spatial data under dynamic, crowded conditions—an
essential requirement for immersive and context-aware Meta-
verse applications. Combining DBSCAN and K-Means clus-
tering further enables accurate detection and representation
of crowd distributions, facilitating the generation of spatial
heatmaps and mobility patterns. Beyond static crowd local-
ization, the proposed system supports dynamic behavioural
insights, such as identifying popular exhibits, crowd bottle-



necks, and navigation trends. These insights are particularly
valuable for use cases in cultural heritage, education, public
safety, smart city planning, and XR-driven event management.

To translate these simulation insights into deployable sys-
tems, there is a need to quantify the practicalities of a
museum-scale installation—namely the capital and operating
cost of a dense mmWave grid, options for powering sensors
over long horizons (PoE wiring vs. low-duty-cycle batteries),
and the constraints imposed by local licence-free allocations
of the 26-28GHz spectrum (mostly limited coverage due
to high path loss and limited field of view). A preliminary
techno-economic and energy-budget analysis is needed to
identify the minimum viable sensor density that meets our
requirements while keeping the total implementation and op-
erational low for cultural-heritage operators.

Looking forward, several promising directions emerge.
First, integrate a real-world mmWave hardware deployment in
a realistic environment to validate our findings and refine our
models and algorithms. Secondly, fusing mmWave data with
complementary sensing modalities (e.g., audio, environmental,
or inertial sensors) could enhance accuracy and enable richer
behaviour classification.
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[21] P. Miazek, A. Żmudzińska, P. karczmarek, and A. Kiersztyn, “Human
behavior analysis using radar data: A survey,” IEEE Access, vol. 12, pp.
153 188–153 202, 2024.

[22] Z. Huang, P. Yang, C. Zhou, W. Wu, and N. Zhang, “Joint sensing
and communication for mmwave vr in metaverse: A meta-learning
approach,” IEEE Internet of Things Journal, vol. 11, no. 13, pp. 24 049–
24 060, 2024.

[23] Y. Wang, M. Chen, Z. Yang, W. Saad, T. Luo, S. Cui, and
H. V. Poor, “Meta-reinforcement learning for reliable communication
in thz/vlc wireless vr networks,” Trans. Wireless. Comm.,
vol. 21, no. 9, p. 7778–7793, Sep. 2022. [Online]. Available:
https://doi.org/10.1109/TWC.2022.3161970

[24] K. Zrar Ghafoor, L. Kong, S. Zeadally, A. S. Sadiq, G. Epiphaniou,
M. Hammoudeh, A. K. Bashir, and S. Mumtaz, “Millimeter-wave com-
munication for internet of vehicles: Status, challenges, and perspectives,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8525–8546, 2020.

[25] K. P. Sinaga and M.-S. Yang, “Unsupervised k-means clustering algo-
rithm,” IEEE access, vol. 8, pp. 80 716–80 727, 2020.

[26] K. Khan, S. U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, “Dbscan:
Past, present and future,” in The fifth international conference on the
applications of digital information and web technologies (ICADIWT
2014). IEEE, 2014, pp. 232–238.


