
Optimisation of the D2D Topology Formation
Using a Novel Deep ML Approach for in 6G

Mobile Networks
Iacovos Ioannou∗ Marios Raspopoulos∥, Prabagarane Nagaradjane‡, Christophoros Christophorou∗,

Ala’ Khalifeh¶, Vasos Vassiliou∗
∗ Department of Computer Science, University of Cyprus and CYENS - Centre of Excellence, Cyprus

‡ Department of ECE, Sri Sivasubramaniya Nadar College of Engineering Chennai, India
¶ German Jordanian University, Amman, Jordan

∥ INSPIRE Research Centre, University of Central Lancashire, Larnaca, Cyprus

Abstract—Optimizing device-to-device (D2D) topologies is piv-
otal for enhancing the performance and efficiency of 6G net-
works. This paper introduces a novel approach for forming opti-
mal subnet trees within these the 6G networks using BDIx agents
and advanced Minimum-Weight Spanning Tree (MWST/MST)
algorithms augmented by Graph Neural Networks (GNNs). Our
solution aims to significantly boost network performance, partic-
ularly in high-demand scenarios such as urban areas, large-scale
events, and remote locations. By minimizing power consumption
and maximizing throughput, our approach dynamically adapts
to changing network conditions, user movements, and traffic
patterns. We implement various MWST algorithms, including
Kruskal’s, Prim’s, and Boruvka’s algorithms, and introduce a
GNN model to predict edge weights. We propose a "weighted
distance" metric to analyze network performance comprehen-
sively. Our AI/ML-driven solution integrates BDIx agents with
MWST algorithms, focusing on optimizing subnets under gNodeB
in 6G networks, enhancing data transmission efficiency, reducing
latency, and increasing throughput. Our approach dynamically
adapts to changing network conditions, user movements, and
traffic patterns by minimizing power consumption and maximiz-
ing throughput. This research contributes to developing scalable
and flexible network management solutions suitable for diverse
configurations and architectures.

Keywords—Device-to-Device (D2D) communication, 6G net-
works, Minimum-Weight Spanning Tree (MWST), Graph Neural
Networks (GNNs), BDIx agents, network optimization, power
consumption, throughput, dynamic adaptation.

I. INTRODUCTION

Optimising D2D topologies is essential in the ever-changing
telecommunications industry to improve the performance and
efficiency of 6G networks. This research focuses on the issue
of creating optimal subnet trees in these 6G networks. This
is crucial for effectively managing the complex weighted
tree structures needed for efficient network governance. Our
proposal involves utilising BDIx agents and sophisticated
Minimum-Weight Spanning Tree (MWST) algorithms, while
employing Graph Neural Networks (GNNs). The objective of
this research is to provide a strong and flexible solution to
greatly improve network performance, particularly in situa-
tions with high demand like densely populated urban areas,
large-scale events, and remote locations where maximising
coverage and connectivity is crucial [1], [2].

The primary challenge in optimizing D2D topologies is to
minimize power consumption and maximize throughput, such

as sum rate, across the network by selecting paths with the
shortest distances and highest data rates. Traditional spanning
tree methods often fail to adapt dynamically to changing
network conditions, user movements, and traffic patterns,
highlighting the need for a more robust and intelligent solution
[3], [4]. Our research aims to overcome these limitations
by introducing a dynamic and adaptive service to optimize
subnet trees in real-time. Using BDIx agents based on the
Belief-Desire-Intention (BDI) framework and augmented with
machine learning, we provide a comprehensive depiction of
the network’s current state, including node positions and
connection quality, which are critical for effective MWST
algorithm application [5], [2]. Our approach involves creating
random trees and trees that are generated using the DAI
framework with BDIx agents with coordinates and distances,
calculating data rates, and applying various MWST algorithms.
This includes implementing a GNN model to predict edge
weights in the spanning tree and evaluating the performance of
different algorithms such as Kruskal’s, Prim’s and Boruvka’s
algorithms. Additionally, we calculate power consumption and
data rates, introducing a "weighted distance" metric for com-
prehensive network performance analysis. This AI/ML-driven
solution focuses on optimizing subnets in 6G networks under
gNodeB, integrating BDIx agents with MWST algorithms
using GNNs [6], [2].

The core purpose of our proposed strategy is to manage the
complex weighted tree structures produced by BDIx agents,
crucial for the closed-loop governance module. By employing
innovative MWST algorithms, we aim to optimize network
topology efficiently, considering key metrics like minimizing
delay and maximizing throughput. The dynamic and flexible
characteristics of our solution allow it to process new data from
the localization submodule, adjusting to network condition
fluctuations, user movement, and traffic patterns for continuous
optimization. Our approach is designed for scalability and
flexibility and is compatible with various gNodeB configu-
rations and 5G architectures. Furthermore, it can assist in
improving data transmission efficiency, reducing latency, and
increasing throughput, thereby offering significant advantages
in different operating scenarios. It offers significant advantages
in high-density urban areas, large-scale events, emergencies,
and remote areas with limited infrastructure"[7], [8], [9].



The novelty of our approach lies in combining BDIx agents
with GNN-based MWST algorithms. This integration allows
dynamic network configuration adjustments in response to
real-time changes or improvements that can be enabled, en-
suring peak network efficiency. The use of GNNs enhances
the capability to handle complex graph structures, providing
a scalable solution for various network sizes and complexities
[10], [11].

The contributions of this research are:
1) Leveraging the Distributed Artificial Intelligence (DAI)

framework with machine learning to provide provides
an adaptive solution for network management [12].

2) Implementing over the state-of-the-art MWST 1 algo-
rithm based on Deep ML that ensures optimal path se-
lection, minimizing latency and maximizing throughput.

3) To propose an approach that ensures the D2D topology
to adapt The service adapts in real-time to changing con-
ditions, user movements, and traffic patterns, ensuring
consistent performance.

4) To propose D2D topology optimisation scheme that The
solution is scalable and flexible, suitable for various
network sizes and complexities.

5) To quantify that the proposed approach results in im-
proved data transmission efficiency, reduced latency,
increased throughput, and optimised resource utilization
Improvements in data transmission efficiency reduce
latency, increase throughput, and optimize resources
[13], [14].

The rest of this article is arranged as follows: Section
II provides a comprehensive discussion of the background
information that is relevant to our inquiry. The proposed
system description is explained in detail in Section III. Section
IV elaborates on the approach employed and the deep learning
models utilized for the estimation along with the methodology
used. The simulation results of the suggested system under
different settings are presented and analyzed in Section V.
Section VI discusses the results drawn from the research and
outlines potential future directions.

II. BACKGROUND WORK

To understand traditional Minimum Spanning Tree (MST)
algorithms, we review classical approaches and a machine
learning method. MST algorithms find a subset of edges form-
ing a tree with minimized total weight. The key algorithms are
Kruskal’s, Prim’s, Boruvka’s, and a Graph Neural Network
(GNN) approach.

1) Kruskal’s Algorithm: A greedy method sorting edges
by weight and adding them to the MST without forming
cycles until V −1 edges are included [8], [15].

2) Prim’s Algorithm: Constructs the MST by starting with
one vertex and repeatedly adding the smallest edge in
terms of the metric examined connecting a vertex in the
tree to one outside it [7], [16].

1MWST algorithms are called like this because we use the weighted metric.
They are the same as the MST.

3) Boruvka’s Algorithm: Treats each vertex as a separate
component, merging the closest components iteratively
until a single component remains [17], [18].

4) GNN Approach: Uses SAmple and aggreGatE Con-
volution (SAGEConv) layers to aggregate information
from node neighborhoods, generating embeddings for
tasks like node classification and MST prediction [19],
[20].

These algorithms have different strengths and weaknesses.
Kruskal’s and Prim’s are general-purpose algorithms, while
Boruvka’s excels in parallel computing. The GNN approach
leverages learned embeddings for potentially improved MST
predictions.

III. SYSTEM DESCRIPTION

This section outlines the problem and system components.
The proposed system comprises a base station (BS), user
equipments (UEs) forming tree-style D2D communication
subnetworks, and a BS controller responsible for optimizing
the network tree as shown in Figure. 1. The BS coordinates
the network, while UEs participate in D2D communications.
The BS controller ensures efficient network management and
performance. BDIx agents, based on the DAI framework
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Figure 1: The System Architecture

and enhanced with machine learning, autonomously form
subnetworks under the BS using a transmission selection
algorithm that employs the Weighted Data Rate (WDR) metric.
This allows BDIx agents to dynamically select transmission
modes and establish efficient subnets by considering data
rates and UE positions. These agents provide a comprehensive
view of the network’s current state, including node positions
and connection quality, aiding the application of MWST
algorithms for optimizing network topology. Initially, BDIx
agents form a subnetwork under the BS. Our target is to
optimize this subnetwork to enhance the existing network’s
performance (i.e., sum rate and power consumption). When
traffic and user demand increase in a specific 5G subnetwork,
the telecom operator can activate activates the BDIx agents
to form a D2D communication network, to increase the
data rates, reduce power consumption, and support required



bandwidth. increasing data rates, reducing power consumption,
and supporting the required bandwidth.

IV. DEEP LEARNING AIDED TOPOLOGY OPTIMISATION
METHODOLOGY

In this section, we provide the introduction of the weighted
distance, the methodology, and the steps that are used in the
research. Specifically,So, this study focuses on creating and
analyzing Minimum Spanning Trees (MST) to minimize the
maximum weighted distance in graphs representing random
trees and trees generated by BDIx agents with coordinates.
We utilize both traditional MST algorithms and a graph
neural network (GNN) approach to predict parent-child re-
lationships in the graph. This section details our method-
ology, including data generation, algorithmic steps, training
process, hyperparameter search, evaluation, and visualization.
Our methodology involves several key steps. First, we create a
structure to track the results for each model, organizing various
metrics such as data rates and power consumption values in
a dictionary. This organization ensures that all necessary data
is easily accessible. We then iterate through different node
sizes, generating sample data for each size to assess model
performance as the network scales. The current node size
being tested is recorded to maintain clear conditions for each
result set. Next, we use Kruskal’s algorithm to compute the
MST for the generated data, finding the subset of edges that
connects all nodes with the minimum total edge weighted
distance. The total weighted distance, data rate, and power
consumption for the MST are calculated and recorded, serving
as benchmark data for training GNN-based models. We then
retrieve the necessary parameters for each model, configure
them, and execute them to generate predictions and construct
trees. Performance metrics for these predicted trees, such as
total weight, data rate, and power consumption, are calculated
and recorded to compare each model’s effectiveness against
the benchmark.

Finally, we compile all recorded results into a comprehen-
sive dataset, containing performance metrics for each model
across different node sizes. This dataset is returned for further
analysis and comparison, ensuring that all evaluation data is
systematically organized and ready for detailed examination.

A. Formulation of Weighted Distance

To calculate the MST towards the root node, referred to
as the BS, we need needed to introduce a new metric, the
weighted distance. The weighted distance is defined as the
maximum link distance of an edge on a path towards the root.
Specifically, for any two nodes u and v, the weighted distance
(physical distance in meters) w(u,v) is given by:

w(u,v) = max
e∈P(u,v)

{d(e)}

where P(u,v) represents the path between nodes u and v,
and d(e) is the distance of edge e on this path (as shown in
1). This metric allows us to create a complete graph where
the edge weights reflect the maximum link distance on a

path towards the root. This setup enables a comprehensive
comparison of the performance of different MST algorithms
and our GNN-based model and also provide us the tool to
calculate the minimum spanning tree that its links have the
minimum weighted distance towards the BS.

B. Methodology Steps

1) Data Creation: The data creation process involves sev-
eral steps to generate synthetic data using random trees along
with trees that are generated from BDIx agents and complete
graphs, focusing on calculating maximum distance paths and
setting appropriate edge weights. Here’s a detailed description
of the procedure:

1) Generating random trees and trees resulted from
with the use of DAI Framework and BDIx agents
with Coordinates [2]: Start by creating a random tree
and a tree with a specified number of nodes that have
been installed on them the BDIx agents. Each node is
assigned coordinates representing the spatial location of
the nodes.

2) Calculating Distances for Tree Edges: Calculate the
distance between the connected nodes for each edge
in the tree. Assign this distance to the edge as both
its distance and weight attribute, ensuring that each
edge has a corresponding distance value representing the
separation between the nodes.

3) Calculating Maximum Distance Paths: Designate a
root node (e.g., node 0) and compute the maximum
distance paths from this root node to all other nodes
in the tree. This step is crucial for understanding the
tree’s structure and the farthest points from the root.

4) Creating a Complete Graph: Generate a complete
graph from the nodes of the tree. In this graph, every
pair of nodes is connected by an edge, allowing for the
consideration of all possible direct connections between
nodes.

5) Assigning Positions to Complete Graph Nodes: As-
sign each node in the complete graph the same coor-
dinates as its corresponding node in the tree, ensuring
consistent spatial representation between the tree and the
complete graph.

6) Calculating Distances and Weights for Complete
Graph Edges: Recalculate the distance between con-
nected nodes for each edge in the complete graph.
Set the weight of each edge to the maximum of the
pre-calculated maximum distances of the two nodes it
connects. This step assigns meaningful weights to the
edges, reflecting the tree’s maximum distance paths.

7) Constructing the Minimum Spanning Tree: Use
Kruskal’s algorithm (selected because it is superior to
other classic approaches [8]) to construct a MST from
the complete graph. This MST connects all nodes with
the minimum possible total edge weight, determining
the minimum distance for each edge in the MST.

8) Converting to a Suitable Data Format: Convert the
complete graph and the MST into a suitable format,



likely an array, for efficient processing in further analysis
or model training.

In summary, the data creation process generates a synthetic
dataset by first creating a random tree and a tree generated
by BDIx agents and calculating distances between nodes. It
then builds a complete graph, assigns appropriate weights
to its edges based on maximum distance paths, constructs a
minimum spanning tree, and formats the data.

2) The Training Features: The dataset used for training
the GNN model consists of several key fields as outlined in
Table I. These fields include the node features, which are the
coordinates of each node in the graph; the edge index, which
defines the connections between nodes; and the edge attributes,
which are the weights of the edges based on node distances.
Additionally, the dataset includes parent indices, representing
the parent-child relationships in the Minimum Spanning Tree
(MST), which are used as labels for training the model.

Table I: Fields of the Dataset Used for Training the GNN
Model

Dataset Field Description Tensor
Shape

Node Features
(pos)

Coordinates (x, y) of each node (num_nodes,
2)

Edge Index
(edge_index)

Indices of nodes forming each edge (2,
num_edges)

Edge Attributes
(edge_attr)

Weights of edges based on distance (num_edges,
1)

Parent Indices
(parent_indices)

Parent node index in the MST (num_nodes)

3) Hyperparameter Search: To optimize the model perfor-
mance, we conduct a hyperparameter search using the Optuna
library over a predefined grid of parameters, selecting the best
combination based on validation loss [21]. The search process
involves exploring various combinations of hyperparameters
to identify the best set for a given model. This is achieved
through a systematic search over a predefined grid of hyper-
parameter values, using K-Fold cross-validation to evaluate
each combination. The hyperparameter search process begins
with the initialization step. Next, the grid search step iterates
over all combinations of the hyperparameters, and the process
continues until, at the end, the best hyperparameters of the
model are identified.

In the model training and evaluation step, the
model is trained and evaluated using the function
TrainAndEvaluate with K-Fold cross-validation for
each combination of hyperparameters. The average validation
loss, avg_val_loss, is computed from the validation losses
obtained from the K-Folds using the formula:

avg_val_loss =
1
k

k

∑
i=1

val_lossi

During the best parameters update step, if avg_val_loss <
best_score, the variable best_score is updated to avg_val_loss.
The variable best_params is then set to the current combi-
nation of hyperparameters, which includes hidden_channels1,
hidden_channels2, and output_dim. Finally, after evaluating

all combinations, the best parameters and the best score are
returned. In summary, the hyper parameter search process
identify the best set that minimizes the validation loss as
described above, and In summary, the hyperparameter search
process systematically explores various combinations of hyper-
parameters using K-Fold cross-validation to identify the best
set that minimizes the validation loss. This approach ensures
the selection of optimal hyperparameters for the given model.

4) Validation using K-Fold Cross-Validation Approach:
The training process involves K-Fold cross-validation to en-
sure robust evaluation. The models are trained on the dataset
using backpropagation and the Adam optimizer. Evaluation
metrics include mean absolute error (MAE), mean squared
error (MSE), root mean square error (RMSE), and R2 score
[22]. The detailed training procedure is as follows:

First, the number of classes is determined by finding the
maximum parent index in the training data. The K-Fold cross-
validation is initialized with the specified number of splits,
and an empty list is created to store the results from each
fold. For each fold in the K-Fold split, the training and testing
subsets are created from the training data list based on the
indices provided by the K-Fold split. For each batch in the
training loader, the optimizer gradients are zeroed, and the
batch data is loaded. The model computes node embeddings
from the batch data, and the parent predictor produces output
from these node embeddings. The loss is computed using the
criterion on the output and the batch’s parent indices. The loss
is then backpropagated, and the optimizer steps to update the
model parameters. Finally, the training loss for the batch is
added to the total training loss. After processing all batches,
the average training loss is computed. The model is evaluated
on the test loader using the defined evaluation metrics, and
the results are appended to the list of fold results. Finally, the
function returns the accumulated results from all folds, and
the best split of training and test percentage is selected, which
is 80% to 20%.

5) Model Implementation: Graph Neural Networks (GNNs)
have emerged as a powerful tool for learning on graph-
structured data. Specifically, we implemented a GNN using
SAGEConv layers to learn node embeddings for predicting
MST-related properties [19]. The SAGEConv layer, or Graph-
SAGE convolution, aggregates features from a node’s local
neighborhood to generate its embedding. This method allows
for efficient computation and scalability to large graphs. The
key steps in our Graph Neural Network (GNN) implementation
involve:

1) Initializing the SAGEConv layers.
2) Forward propagation through the network to generate

node embeddings.
3) Using the embeddings to predict MST-related properties.
The GNN implementation using SAGEConv layers takes a

data object as input, which contains node features and edge
indices. A sequential model is created, and it consists of a
SAGEConv layer that takes the input channels and transforms
them into hidden channels, followed by a ReLU activation
function. Another SAGEConv layer takes the hidden channels



and transforms them into output channels. An optimizer is
created using the Adam optimization algorithm, with the
model’s parameters and a learning rate of 0.01. The training
process runs for a specified number of epochs. During training,
the model is set to training mode, and the gradients of the
optimizer are zeroed. Forward propagation is performed on
the input data to generate node embeddings, using the node
features and edge indices as inputs to the model. The loss is
calculated using a specified loss function, which compares the
model’s output with the target labels. Backward propagation
is performed to compute the gradients, and the optimizer
steps to update the model parameters. After completing the
training epochs, the function returns the trained model. This
model learns node embeddings and uses a fully connected
neural network to predict parent-child relationships. The ar-
chitecture of the GNN model is described in Algorithm 1.
The GNNModel function is called to initialize the model
with the specified layers and dimensions. The Forward
function is called during the forward pass to compute the node
embeddings.

Algorithm 1 GNN Model

1: function GNNMODEL(hidden_channels1,
hidden_channels2, output_dim)

2: sel f .conv1← SAGECONV(2, hidden_channels1)
3: sel f .conv2 ← SAGECONV(hidden_channels1, hid-

den_channels2)
4: sel f .conv3 ← SAGECONV(hidden_channels2, out-

put_dim)
5: sel f .linear← LINEAR(output_dim, output_dim)
6: end function
7: function FORWARD(data)
8: x,edge_index← data.x,data.edge_index
9: x← RELU(self.conv1(x, edge_index))

10: x← RELU(self.conv2(x, edge_index))
11: x← sel f .conv3(x,edge_index)
12: x← sel f .linear(x)
13: return x
14: end function

Algorithm 2 Parent Predictor Model

1: function PARENTPREDICTOR(input_dim, hidden_dim,
num_classes)

2: sel f .lin1← LINEAR(input_dim, hidden_dim)
3: sel f .lin2← LINEAR(hidden_dim, hidden_dim)
4: sel f .out put← LINEAR(hidden_dim, num_classes)
5: end function
6: function FORWARD(x)
7: x← RELU(self.lin1(x))
8: x← RELU(self.lin2(x))
9: return sel f .out put(x)

10: end function

The GNNModel function is called during model initial-
ization to set up the convolutional layers (conv1, conv2,

conv3) and the linear layer (linear). The Forward
function is executed during each forward pass through the
network, where it takes the input data, applies the convolu-
tional layers with ReLU activations, and then applies the final
linear transformation to produce the output node embeddings.
To predict parent nodes, we implemented a Parent Predic-
tor model (Algorithm 2). The ParentPredictor function
initializes the model with the specified dimensions for the
input, hidden layers, and output. The Forward function is
called to compute the predictions for the parent nodes. The
ParentPredictor function is called during model initial-
ization to set up the linear layers (lin1, lin2, output).
The Forward function is executed during each forward pass,
where it takes the input node embeddings, applies the linear
transformations with ReLU activations, and then produces the
final output, which is the predicted parent indices for each
node. These models work together to first learn the node
embeddings using the GNN with SAGEConv layers and then
use these embeddings to predict the parent-child relationships
in the graph. the above steps have been discussed in detail
in the previous section..should we do it once again??–
Please check the source file...If you feel to retain, please
uncomment
The trained model can then be used to predict MST-related
properties based on the node embeddings generated during
forward propagation.

6) Evaluation: We evaluate the performance of our models
on a range of node sizes, comparing the GNN-based approach
with traditional MST algorithms in terms of total weighted
distance, data rate, and power consumption. The detailed
evaluation procedure is structured to ensure a comprehen-
sive assessment of each model’s performance across different
network node sizes. To thoroughly evaluate the performance
of our models on varying network node sizes, we compare
compared the GNN-based approach with traditional MST
algorithms. The focus was on metrics such as total weighted
distance, data rate, and power consumption. The evaluation
process systematically tests each model across a range of
node sizes and compares their performance against the Kruskal
MST algorithm, serving as a benchmark.the previous statement
is repeated The entire evaluation procedure is encapsulated in
Algorithm 3. This algorithm outlines the step-by-step process
for evaluating the models, ensuring a systematic and recursive
repeatable method for performance assessment.



Algorithm 3 Evaluate Models

1: function EVALUATEMODELS(models, best_params,
num_nodes_range)

2: test_results← dictionary of result lists
3: for all model_class ∈ models do
4: model_name← model_class.__name__
5: Initialize test_results lists for model_name data

rate and power consumption
6: end for
7: for all num_nodes ∈ num_nodes_range do
8: data, initial_BDIx_tree, f ull_graph,kruskal_mst←

CREATESAMPLEDATA(num_nodes)
9: test_results[′num_nodes′].append(num_nodes)

10: mst,kruskal_weight ←
KRUSKALMST(full_graph)

11: kruskal_data_rate,kruskal_power_loss ← CAL-
CULATEMSTMETRICS(full_graph, kruskal_mst)

12: Append kruskal_weight, kruskal_data_rate, and
kruskal_power_loss to test_results

13: for all model_class ∈ models do
14: model_name← model_class.__name__
15: Retrieve model-specific parameters and instan-

tiate model
16: Construct predicted_tree from

predicted_parents
17: end for
18: end for
19: return test_results
20: end function

Our proposed methodology combines both traditional and
modern machine learning techniques to tackle the problem
of optimising MSTs optimisation, leveraging the strengths of
both approaches. for comprehensive analysis and comparison.

Table II: Simulation Parameters

Parameter Value
Frequency 2.4 GHz

Transmit Power 20 dBm
Gain 2 dB

Noise Figure 10 dB
Bandwidth using WiFi Direct 1 MHz

Path Loss Exponent 2
Noise Floor Level -174 dBm/Hz

V. SIMULATED RESULTS AND ANALYSIS

This section provides the description of the metrics that
are used in the examination. It also evaluates the performance
of the proposed deep learning-enhanced optimization of the
D2D communication model with traditional approaches using
specific network metrics. Moreover, it examines the impact of
NN and GNN estimation over the ML metrics (i.e., Train Loss,

Validation Loss, MAE, MSE, RMSE, R2, adj R22) measured in
terms of weighted distance in various scenarios. The training
and testing sets consist of 8000 and 2000 samples, respectively.
The simulation parameters are presented in Table II.

A. Results and Analysis Regarding Network Metrics

This section presents an in-depth analysis of the network
metrics for optimizing D2D communication topologies using
various algorithms, including a novel GNN-based approach.
The metrics include time of execution, total weighted distance,
data rate, and total power consumption. The results are based
on the number of nodes in the network.
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Figure 2: Comparison of network metrics for different algo-
rithms as the number of nodes increases.

1) Time of Execution: Figure 2a shows the time of execu-
tion for different algorithms as the number of nodes increases.
The GNN model consistently demonstrates lower execution
times compared to most other algorithms, particularly for
larger networks. This efficiency is crucial for real-time ap-
plications where rapid computation is necessary. The GNN
model’s ability to quickly compute optimal topologies stems
from its deep learning-based approach, which effectively gen-
eralizes from training data to make fast predictions during {can
inference be replaced with an appropriate word} inference.
Kruskal’s algorithm shows a similar trend but with slightly
higher execution times, making it another viable option for

2Train Loss: Measures how well the model fits the training data. A lower
value indicates a better fit. Validation Loss: Evaluates model performance
on unseen validation data. Lower values signify better performance. MAE
(Mean Absolute Error): Averages the absolute differences between predicted
and actual values. Indicates model accuracy in terms of average error.
Lower values are better. MSE (Mean Squared Error): Averages the squared
differences between predicted and actual values. Penalizes larger errors more
than smaller ones. Lower values are preferable. RMSE (Root Mean Squared
Error): Square root of the MSE. Maintains the same unit as the target variable.
R2 (R-squared): Represents the proportion of variance in the target variable
explained by the model. Ranges from 0 to 1. Higher values indicate better
explanatory power. Adj R2 (Adjusted R-squared): Adjusts the R2 value for
the number of predictors in the model [22].



real-time applications. Prim’s algorithm, however, has the
highest execution time among all the compared algorithms,
indicating it may not be suitable for real-time applications in
large networks. Both Boruvka and Random Tree algorithms
have higher execution times than the GNN model but are still
lower than Prim’s. The BDIx algorithm shows competitive
execution times, although not as low as the GNN model.

2) Total Weighted Distance: Figure 2b illustrates the total
weighted distance for different algorithms. The GNN model
maintains a lower total weighted distance compared to the
Random Tree algorithm, indicating its effectiveness in opti-
mizing the paths within the network. This metric is crucial for
minimizing latency and ensuring efficient data routing. The
GNN model’s ability to learn from graph structures allows it
to make intelligent decisions about path optimization, leading
to lower weighted distances. Kruskal and Prim algorithms
perform comparably well, with slightly higher total weighted
distances than the GNN model. Boruvka also performs well
but is not as consistent as the GNN model. The Random Tree
algorithm shows significantly higher weighted distances, indi-
cating poor path optimization. The BDIx algorithm performs
better than Random Tree but not as well, as the GNN model.

3) Sum Rate: Figure 2c presents the data rate for different
algorithms. The GNN model achieves a high data rate, close
to that of Boruvka’s algorithm, and significantly better than
the Random Tree algorithm. This high data rate indicates the
GNN model’s efficiency in maximizing network throughput,
which is essential for supporting bandwidth-hungry high-
bandwidth applications. The model’s capability to understand
and optimize the network’s data flow patterns contributes to
this high performance. Boruvka’s algorithm achieves a slightly
higher data rate than the GNN model, but both are very close
in performance. Kruskal and Prim algorithms perform well
but have lower data rates compared to the GNN model. The
Random Tree algorithm, on the other hand, shows a lower data
rate, reflecting its inefficiency in optimizing data transmission
paths. The BDIx algorithm performs comparably to the GNN
model, indicating efficient data routing.

4) Total power consumption: Figure 2d depicts the to-
tal power consumption for different algorithms. The GNN
model exhibits lower power consumption compared to the
Random Tree algorithm, demonstrating its energy efficiency.
Minimizing power consumption is critical for extending the
lifespan of network devices and reducing operational costs.
The GNN model’s optimization process takes into account not
only the network’s connectivity but also its power consumption
patterns, resulting in lower total power consumption. Kruskal
and Prim algorithms perform comparably to the GNN model
in terms of power consumption, indicating similar levels of
energy efficiency. Boruvka has a slightly higher power con-
sumption but remains efficient. The Random Tree algorithm
shows the highest power consumption, indicating inefficiency
in power management. The BDIx algorithm performs well,
with power consumption close to the GNN model, highlighting
its effectiveness in minimizing energy consumption.

The content seems repeating hence commented–refer to

source file

B. Results and Analysis Regarding ML Metrics

The dataset provided includes various metrics for evaluating
a machine learning model. Here is an in-depth analysis of the
results:

Table III: Model Evaluation Metrics

Train Loss Val Loss MAE MSE RMSE R2 Adj R2

0.0338 0.0044 0.0143 0.9855 0.9928 0.9661 0.9661

According to Table III, the training loss is 0.0338, while the
validation loss is significantly lower at 0.0044. This indicates
that the model performs better on the validation dataset than
the training dataset. The MAE is 0.0143, showing the average
magnitude of errors in a set of predictions without considering
their direction. the above sentence is incomplete..Pls chk The
MSE is 0.9855, indicating relatively low average squared
errors. The RMSE of 0.9928, derived from the MSE, indicates
the model’s error magnitude is just below 1. The R2 value is
0.9661, indicating that 96.6% of the variance in the dependent
variable is predictable from the independent variables. The
adjusted R2 value is nearly identical at 0.9661, reinforcing the
model’s efficacy. high explanatory power

The model exhibits excellent performance on both the
training and validation sets, as indicated by the low loss values
and high R2 values. The error metrics (MAE, MSE, RMSE)
suggest that our the model’s predictions have very low errors.
The high R2 and adjusted R2 values indicate that our the model
has explains a significant portion of the variance in the target
variable, showcasing its robustness and predictive power.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a comprehensive evaluation of a deep
learning-enhanced optimization of the D2D communication
model compared to traditional methods. The results show that
the GNN model, along with Kruskal and BDIx algorithms,
generally performs better across various metrics compared to
Prim, Boruvka, and Random Tree algorithms. The GNN model
and Kruskal algorithm offer balanced performance with low
execution times, optimized weighted distances, high data rates,
and reduced power consumptions, making them suitable for
real-time applications in large D2D networks. The GNN model
has the lowest execution times, making it highly efficient for
real-time applications, while Kruskal’s algorithm also shows
competitive performance in this regard. In terms of total
weighted distance, the GNN model outperforms other algo-
rithms, indicating superior path optimization, which is crucial
for minimizing latency and ensuring efficient data routing.
Regarding data rate, the GNN model achieves high data rates,
indicating its efficiency in maximizing network throughput,
essential for high-bandwidth applications. Moreover, the GNN
model demonstrates lower power consumption, showcasing
its energy efficiency and effectiveness in minimizing power
consumption. These findings suggest that the GNN model is
not only effective but also efficient for deployment in modern



communication networks where real-time data processing and
energy efficiency are paramount.

The promising results of the GNN model pave the way
for several future research directions. One area is scalabil-
ity studies, investigating the GNN model’s performance in
larger network scenarios to ensure robustness. Real-world
deployments in D2D communication systems can validate
its practical applicability. Additionally, hybrid models com-
bining GNN with other techniques or traditional algorithms
could enhance can be explored for possible enhancement
in performance and efficiency. Research on reducing power
consumption and enhancing energy efficiency in large-scale
networks is crucial.{the above sentence seems repeating hence
strike-through} Adaptive learning mechanisms for dynamic
network adjustments and robust security protocols within the
GNN framework can also be delved into. are also essential
Addressing these areas will further enhance the capabilities
of deep learning-aided models in modern communication
networks.
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