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Abstract—This paper addresses the challenge of achieving
precise 3D localization of multiple objects in indoor environments
using millimeter-wave (mmWave) sensing. mmWave positioning
systems have recently emerged as a promising technology of-
fering cm-level accuracy and robustness; however, the radar-
like nature of mmWave technology presents challenges in multi-
target positioning, particularly in complex environments where
distinguishing between multiple objects becomes difficult. To
address this, we explore clustering as a solution to analyze data
from mmWave sensors and group similar data points, facilitating
the identification of distinct targets. This paper aims to leverage
the potential of mmWave radar technology to achieve precise
ranging and angling measurements in multi-target environments,
presenting a comprehensive methodology for evaluating the
performance of mmWave sensors for achieving 3D positioning
accuracy using four clustering approaches: K-Means, DBSCAN,
Affinity Propagation, and BIRCH. The experimental results
highlight the potential and challenges of each approach in terms
of accuracy, robustness and execution time.

Index Terms—3D, Indoor Positioning, millimeter-wave sensing,
clustering, multi-target

I. INTRODUCTION

Accurate three-dimensional (3D) localization of multiple
objects in indoor environments remains a significant challenge
across various domains, including robotics, human–computer
interaction, and security. Achieving high precision in these
conditions is essential for autonomous navigation, crowd-
control, and surveillance systems. However, existing localiza-
tion methods often struggle to maintain the required accuracy
and reliability when multiple targets must be tracked.

Over the past couple of decades, research was focused
on solving the localization problem in satellite-denied en-
vironments, using various radio and non-radio technologies;
however, solutions have been limited to estimating positions
in 2D (xy), often overlooking the vertical (z) dimension.
This omission can lead to challenges in accurately determin-
ing the position of objects, such as UAVs, in a 3D space,
where precision is critical to avoid obstacles, often requiring
accuracy at sub-meter levels. In our previous work [1], we
provided a thorough review of the available technologies for
3D positioning. Another challenge lies in the difficulty of
identifying multiple targets that are not radio-capable, like in
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a typical crowd control application. Radar-based millimetre-
wave (mmWave) positioning systems have been identified as
a promising solution to address this need. mmWave technology
is already utilized in Wi-Fi (e.g. IEEE802.11ad), and it is
expected to play a significant role in 5G (and beyond) com-
munications due to its flexibility to use wider bandwidths at
frequencies between 26-300 GHz. This enables exact timing
(thus, ranging) resolution to non-radio-enabled targets based
on sensing. Sensing is typically implemented using range
estimation from moving targets, which generate Doppler shifts
and constitute a crucial key-enabling technology in the 6G era.
Moreover, using large-scale phase array antennas facilitates
accurate phase estimation, which enables angle determination.
Combined, these capabilities empower mmWave systems to
achieve centimeter-level 3D positioning accuracy or better [2].

The utilization of mmWave technology in various appli-
cations has undeniably demonstrated its potential for high
precision and accuracy. However, unlike technologies that use
receiver-transmitter setups such as Ultra-Wideband (UWB)
[3], a notable challenge associated with mmWave lies in
its radar-like nature, particularly when identifying multiple
objects in 3D space. A mmWave sensor emits high-frequency
electromagnetic waves that bounce off surrounding objects
and return as echoes. These echoes can merge in complicated
environments, making it difficult to differentiate specific ob-
jects. This becomes particularly more challenging when using
multiple sensors and is critical in applications such as indoor
crowd control or autonomous vehicle navigation, where the
ability to discern and track multiple objects is paramount.

When addressing the complexities associated with multi-
target positioning using mmWave sensing, clustering emerges
as a promising solution. It involves analyzing the mmWave
data and grouping it based on its proximity, allowing for
the identification of distinct clusters representing individual
targets. Several solutions are proposed in literature that uti-
lize various clustering techniques for multi-target positioning;
however, most of them focus on 2D, while only a few of
them focus on mmWave, and most of the proposed solutions
have not been tested in real-time. Our work addresses this
gap by investigating the use of 3D mmWave technology for
multi-target positioning while evaluating various state-of-the-
art clustering approaches.

This paper addresses the challenges mentioned above by
exploring novel strategies for precise 3D localization of mul-



tiple objects using mmWave sensing. Specifically, we in-
vestigate techniques that enhance target discrimination and
tracking capabilities in cluttered indoor environments, thereby
unlocking the full potential of mmWave-based positioning
for multi-object scenarios. By identifying the limitations of
current systems and proposing effective solutions, this work
lays the foundation for more reliable and accurate localization
in advanced indoor multi-target applications.

The remainder of this paper is organized as follows: Section
II provides the recent related works in multi-object clustering
for 3D localization using mmWave, while Section III describes
the methodology and setup used for the experimentation as
well as an analysis of the precision of the sensors used and the
clustering techniques. Section IV presents the experimentation
results, including the accuracy achieved using four clustering
approaches. Sections V and VI, provide a critical discussion
and conclusion.

II. RELATED WORK

Various partition-based, hierarchical, and density-based
clustering algorithms, such as K-Means or DBSCAN (Density-
Based Spatial Clustering of Applications with Noise), can be
tailored to the specific requirements of the positioning system
and are among the most frequently mentioned in the literature.
The authors in [4] provide a review of the multi-object tracking
techniques and algorithms as well as their challenges and lim-
itations. This review encompasses the integration of mmWave
sensors with other technologies, such as cameras, and the
exploration of Micro-Doppler effects for human detection,
including the analysis of heartbeat and breathing patterns, as
well as the application of machine learning. Similarly, the
authors of [5] provide a systematic review of clustering and
multi-target tracking techniques for LiDAR point clouds in
autonomous driving applications. LiDAR is a radar system
that emits laser beams to detect targets, which have similar
radar-like qualities to mmWave. This paper provides a detailed
overview of current challenges, research gaps, and advance-
ments in clustering and Multi-Target Tracking (MTT) tech-
niques for LiDAR point clouds, thus contributing to the field of
autonomous driving. It discusses various clustering techniques,
however, it is not mmWave-focused. The mmWave-focused
works include [6], which discusses the use of a DBSCAN-
clustering algorithm for mmWave multi-target detection. It
emphasizes that with DBSCAN, it is difficult to distinguish
points effectively due to multipath noise, but this difficulty
is reduced when combined with multi-frame joint processing.
[7] extends the reliability of a mm-wave-radar tracking by
combining it with camera data. It takes into consideration the
error bounds of the two different coordinate systems from the
heterogeneous sensors and uses a new fusion-extended Kalman
Filter to fuse the heterogeneous data, demonstrating a range
accuracy of 0.29m with an angular accuracy of 0.013rad
in real-time. A hybrid method of combining K-Means and
DBSCAN (Kmeans-DBSCAN) for image segmentation is
proposed in [8]; however, the focus is only on 2D. Due to
the high computational complexity of DBSCAN and the large

size of image datasets, K-Means is applied to reduce the
size of image datasets in the proposed approach. The most
similar work to ours is the one reported in [9] that uses two
IWR1642BOOST mmWave radar sensors for accurate object
detection and tracking. The Unscented Kalman Filter track-
ing algorithm with data association tracks multiple objects
simultaneously in terms of accuracy and timing. DBSCAN
is used to group all the clustered points to combine data from
the two sensors. The authors mention that they have tried
to implement a modified version of DBSCAN, VDBSCAN,
but have shown no significant improvement in accuracy. K-
Means is then implemented to distinguish the clustered points
and convert them to centroids, demonstrating an average 2D
positioning accuracy of 0.57m.

III. METHODOLOGY

This section presents the methodological framework used
and it describes the experimental setup and equipment used
while considering the particular challenges that the clustering
techniques and mmWave sensors impose in achieving high 3D
positioning accuracy. A precision analysis was performed for
the mmWave sensor used to verify its measurement precision
and single-target 3D positioning accuracy.

A. Equipment

The mmWave radar sensor used for the experimentation was
the Texas Instruments (TI) IWR1843BOOST. It is equipped
with 4 receiving and 3 transmitting antennas operating at
frequencies between 76-81 GHz with a 120-degree field
of view and ranging capabilities of up to 72 meters. The
sensor possesses a Frequency Modulated Continuous Wave
(FMCW) transceiver, which enables the measurement of range,
azimuth, and elevation angles to the target. We used 5 sensors,
connected to a Raspberry Pi that parses the collected data
and sends it to a central PC. The experimental setup involved
utilizing a set of basketballs with a 24.0cm diameter.

B. Sensor Precision Analysis

An experiment was conducted to evaluate the sensing
quality of the IWR1843BOOST mmWave sensor in terms
of range, azimuth and elevation measurement precision. Our
previous work reported in [10], [11] provides full details about
this precision analysis. In a nutshell, a basketball hanging
from the ceiling was used to emulate a flying target, paying
particular attention to the importance of the dynamic motion of
that target, which is required to generate the needed Doppler
shift that triggers the detection and thereafter the range/angle
estimation. To mimic a moving drone behavior, a pivot was
pinned around the axis of the rope from which it was hanging.
Measurements were collected at varying distances up to 6.5m
and at various azimuth and elevation angles ranging between
0-60o and 0-45o respectively. In summary, the range-precision
analysis has shown that at 0o, the average distance error stands
at 0.17m, gradually rising to approximately 0.32m at 60o.
The azimuth precision analysis indicates that errors ranged
between 0.5 and 3.5o, which increased due to reduced target



size, facilitating more accurate detection. A consistent pattern
was observed for elevation errors, where errors increased with
both the azimuth angle and distance. The sensor was most
accurate at measuring elevation at bore-sight (at 0o azimuth),
with errors between 1-2o up to 30o of elevation.

C. Experimental Setup

Both the precision analysis and the 3D positioning accu-
racy experimentation using the IWR1843BOOST mmWave
sensors were carried out in an 8.93×6.55m laboratory, the
top-view of which is shown in Figure 1a. The setup includes
5 IWR1843BOOST sensors, each positioned and oriented
differently while targeting the center of the room (indicated
with different capital letters in Figure 1a). These sensors
collect numerous data points around a target, including some
random outliers. This data includes range and angle (azimuth,
elevation) estimations of the targets. Each sensor determines
the location of the targets it ”sees” relative to its own body co-
ordinate system, which is subsequently converted to the local
coordinate system of the room using standard conversions (see
[10]). Due to the data collected from multiple sensors, clusters
are formed around the targets, which must be distinguished.

Using this methodology, multi-target positioning experi-
ments were conducted employing various clustering tech-
niques to investigate their detection accuracy. The setup in-
volved a set of balls, each representing the size of a typical
drone, suspended at various locations at different heights
within the room. Their ground truth position was measured
using a laser rangefinder (KALEAS LDM500-60). These balls,
were set into motion by spinning to mimic the dynamic
behaviour of moving objects. This complex setup aimed to
replicate real-world conditions where multiple objects might
operate simultaneously in close proximity. Two different ex-
perimental use cases were used to evaluate the performance of
the clustering techniques. In the first scenario (see Figure 1b),
5 objects were strategically placed far apart from each other
within the lab, creating five easily distinguishable targets. This
setup facilitated the clustering algorithms’ task of segregating
and pinpointing distinct centroids. The second scenario (see
Figure 1c) introduced an additional target, bringing the total
to 6, and featured two pairs of clusters (P1-P2 and P3-
P4) positioned relatively close to each other (around one
meter). This arrangement was designed to test the clustering
techniques’ ability to discern and separate the two closely
situated clusters, presenting a more complex challenge. The
mmWave sensors were tasked with gathering numerous data
points, which were predominantly dispersed around each ob-
ject within the room. This collection of data points, embodying
the spatial distribution of objects, was subsequently input into
the clustering algorithms to assess their performance in terms
of accuracy, robustness, and execution time.

D. Clustering Techniques

In data analysis, clustering algorithms play a pivotal role
in interpreting complex datasets. The experimentation’s core
revolved around applying four distinct clustering approaches:

K-Means, DBSCAN, Affinity Propagation, and BIRCH. Each
algorithm offers a unique clustering approach, ranging from
centroid-based to density-based and hierarchical techniques.

1) K-Means Clustering: K-Means is a centroid-based clus-
tering algorithm that partitions the data into K distinct, non-
overlapping clusters. The algorithm iteratively adjusts the
centroids to reduce the total variance within each cluster [12]–
[14]. It requires the number of clusters (K) to be specified
in advance, which is a key parameter that directly influences
the clustering outcome, as it determines the granularity of the
clustering. A value that is too low may merge distinct groups
into a single cluster, while a value that is too high may lead
to overfitting, identifying clusters within what is essentially
noise, splitting cohesive clusters into multiple, smaller ones.

2) DBSCAN Clustering: DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) is a density-based
clustering algorithm. It groups up points that are closely
packed together, marking as outliers any points that lie alone
in low-density regions. This method is effective for data
with clusters of similar density [15], [16] and its algorithm
effectiveness relies heavily on two parameters: epsilon (ε) and
minimum cluster size (MinPts). ε sets the neighborhood
radius around each centroid, dictating what is considered
close enough to form a cluster, while MinPts defines the
minimum number of points a cluster needs, distinguishing core
points (points in dense areas) from noise (points in sparse
areas). Balancing ε and MinPts is essential to ensure the
correctness of the clustering result. For our experiments, to
accurately determine these parameters, a drone was stationary
and hovered at random points in the lab at different heights,
and several data captures were performed, which formed a
cluster of points around it. The collected data points within the
cluster were then counted to determine the MinPts value, and
distances to the true locations of each point were averaged to
calculate the ε value. As can be seen by the histogram shown
in Figure 1d, the majority of the clustered points were within
0.3− 0.5m distance averaging at around 0.35m from the true
location, and MinPts was averaged to around 30 points.

3) Affinity Propagation Clustering: Affinity Propagation
distinguishes itself by not necessitating a predefined number of
clusters, instead creating clusters through messages exchanged
between data points. It includes two parameters: preference
(preference) and damping factor (damping). preference
is key in deciding the likelihood of data points becoming
exemplars, thus influencing the number of clusters. Adjusting
preference directly impacts the clustering detail; higher values
increase cluster numbers by permitting more points to act
as centers, while too high a preference can lead to over-
fragmentation, and too low may overlook dataset diversity
[17], [18]. damping modulates the availability of message
updates to avert numerical oscillations during iterations. Gen-
erally set between 0.5 and 1, with 0.5 being a typical default,
tuning the damping factor is crucial for balancing convergence,
speed and stability, particularly in complex datasets.

4) BIRCH Clustering: The BIRCH algorithm (Balanced
Iterative Reducing and Clustering using Hierarchies) is de-



(a) mmWave Positioning Experimental Setup
(Y: Yaw, P: Pitch, R: Roll) (b) Setup A: 5 Objects (c) Setup A: 6 Objects

(d) Drone Cluster Histogram (e) Clustering Results for Setup A (f) Clustering Results for Setup B

Fig. 1: Setup and Results

signed to efficiently cluster large datasets through a CF-
Tree structure, which summarizes the data, followed by a
clustering algorithm applied to the tree’s leaf nodes [19]. Its
efficiency hinges on three parameters: i) the threshold, ii)
the branchingfactor, and iii) optionally, the desired number
of clusters. The threshold parameter dictates the maximum
diameter of subclusters in the leaf nodes, influencing the
clusters’ compactness and detail. A lower threshold leads to
smaller clusters, while a higher threshold may merge clusters,
reducing detail but possibly increasing noise sensitivity. The
branchingfactor limits the number of child nodes a tree node
can have, affecting the CF Tree’s size and complexity. This
factor is crucial for managing memory usage and can impact
the algorithm’s speed and clustering accuracy.

IV. RESULTS

This section describes the results of the 3D positioning
experiment using the two setups described in Section III. In
each experimental case, every clustering algorithm was exe-
cuted using consistent parameters to ensure a fair comparison
of their performance. For the K-Means algorithm: Setup A
utilized K = 5, while Setup B used K = 6. DBSCAN
parameters were uniformly set with an ε value of 0.35 and a
MinPts threshold of 30. Affinity Propagation was configured
with a damping factor of 0.5, and it internally optimized
the preference value to identify the most suitable number
of clusters automatically. The proposed process begins with
an initial estimation of clusters using Mean Shift clustering to

understand the data distribution. The preference value is then
varied across a range derived from the data variance, indicating
the spread of data and suggesting how closely points should be
grouped. For each preference value, the Affinity Propagation
model is fitted, and the clustering quality is evaluated using
the silhouette score, which assesses the compactness and
separation of the clusters. The preference leading to the highest
silhouette score, indicating optimal clustering, is selected. This
optimized preference is used in the final model fitting to pro-
duce coherent and well-separated clusters. Similarly, BIRCH
was allowed to optimize its parameters within specified ranges:
the threshold for clustering was tested across a spectrum
from 0.1 to 1 (in increments of 0.1), and the branching factor
varied from 20 to 100 (in increments of 10), facilitating the
exploration of different hierarchical clustering structures.

Experiments in both cases were performed over a period of
30 seconds while capturing measurements every second. The
results were averaged and are tabulated in Tables I and II,
indicating the mean and standard deviation of the XY Z and
3D errors across all targets in each use case. No additional
noise was introduced to account for environment variabil-
ity, assuming static conditions around the targets. Table III
showcases the comparison summary between all the clustering
approaches for both setups: average 3D accuracy, clusters
detected and execution times on a MacBook Pro deployed with
a 2.3 GHz Quad-Core Intel Core i7 and 16GB of memory.

As indicated in Table I, for Setup A, the DBSCAN and K-
Means methods demonstrated the most promising results, aver-



TABLE I: Multi-Object Clustering 3D Positioning (Setup A) - (* - no clusters were found)

K-Means DBSCAN Affinity Propagation BIRCH
Point XYZ Error(m) 3D XYZ Error(m) 3D XYZ Error(m) 3D XYZ Error(m) 3D

x y z Error(m) x y z Error(m) x y z Error(m) x y z Error(m)
A1 0.08 0.15 0.12 0.21 0.06 0.13 0.05 0.16 0.20 0.17 0.08 0.27 * * * *
A2 0.12 0.20 0.10 0.26 0.12 0.14 0.14 0.23 0.18 0.06 0.15 0.24 0.10 0.20 0.09 0.24
A3 0.12 0.14 0.22 0.29 0.14 0.07 0.17 0.23 0.11 0.07 0.24 0.27 0.22 0.39 0.12 0.53
A4 0.15 0.03 0.17 0.22 0.19 0.01 0.22 0.29 0.27 0.02 0.27 0.39 * * * *
A5 0.11 0.12 0.04 0.17 0.09 0.14 0.01 0.17 0.17 0.15 0.14 0.27 0.22 0.03 0.25 0.34

Average 0.12 0.13 0.13 0.23 0.12 0.10 0.12 0.22 0.19 0.09 0.18 0.29 0.18 0.20 0.15 0.35
St Dev 0.02 0.06 0.07 0.04 0.05 0.06 0.08 0.05 0.06 0.06 0.08 0.06 0.07 0.18 0.09 0.11

TABLE II: Multi-Object Clustering 3D Positioning (Setup B) - (* - no clusters were found)

K-Means DBSCAN Affinity Propagation BIRCH
Point XYZ Error(m) 3D XYZ Error(m) 3D XYZ Error(m) 3D XYZ Error(m) 3D

x y z Error(m) x y z Error(m) x y z Error(m) x y z Error(m)
B1 0.13 0.22 0.16 0.30 0.20 0.23 0.09 0.31 0.15 0.22 0.11 0.29 * * * *
B2 0.25 0.19 0.12 0.34 * * * * 0.22 0.18 0.08 0.30 0.29 0.21 0.14 0.38
B3 0.15 0.14 0.06 0.21 0.11 0.21 0.11 0.26 0.15 0.27 0.13 0.34 0.11 0.15 0.07 0.20
B4 0.15 0.12 0.08 0.21 * * * * 0.25 0.14 0.09 0.30 * * * *
B5 0.17 0.18 0.15 0.29 0.17 0.15 0.19 0.30 0.22 0.13 0.17 0.30 * * * *
B6 0.06 0.03 0.18 0.20 0.14 0.11 0.14 0.23 0.19 0.17 0.03 0.26 0.20 0.30 0.11 0.38

Average 0.15 0.15 0.13 0.25 0.15 0.17 0.13 0.27 0.20 0.19 0.10 0.29 0.20 0.22 0.11 0.32
St Dev 0.06 0.07 0.05 0.06 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.03 0.09 0.08 0.04 0.11

TABLE III: Setup A and B Experimental Results Comparison

Clustering Approach Setup A Setup B
3D Accuracy (m) Clusters Found Execution Time (s) 3D Accuracy (m) Clusters Found Execution Time (s)

K-Means 0.23 5/5 0.0017 0.25 6/6 0.0022
DBSCAN 0.22 5/5 0.0018 0.27 4/6 0.0022

Affinity Propagation 0.29 7/5 1.25 0.29 8/6 2.35
BIRCH 0.35 3/5 1.04 0.32 3/6 1.59

aging 0.22m and 0.23m 3D positioning accuracy, respectively
while both approaches managed to find the exact number of
clusters with an impressive execution time of around 0.0018s
compared to others. Affinity Propagation has achieved around
0.29m accuracy; however, for most of the performed tests,
the algorithm identified more clusters than their actual value.
Often it would output two clusters within one and had the
slowest execution time of around 1.25s. BIRCH had the
poorest performance, identifying only 3 out of 5 clusters with
an accuracy of 0.35m and a slow execution time of 1.04s.

Results got slightly worse in Setup B (see Table II). The K-
Means achieved a 3D positioning accuracy of around 0.25m
while detecting all clusters. On the other hand, DBSCAN
has failed to separate the two pairs of closely positioned
targets, only identifying 4 clusters with an accuracy of around
0.27m. This is also indicated in Figures 1e and 1f which show
the detected clusters versus the actual (ground truth) object
positions for the two setups using DBSCAN. The execution
time for both K-Means and DBSCAN was still found to be
as low as 0.0022s. The Affinity Propagation approach has
achieved a 3D accuracy of around 0.29m; however, similarly
to the Setup A experiment, it has failed to distinguish the
exact number of clusters and, in most cases, has outputted on
average eight instead of six clusters as well as doubled its
execution time to around 2.35s. BIRCH, similarly to Setup A,
has only identified 3 clusters out of 6 with an average accuracy
of around 0.32m and an execution time of around 1.59s.

V. DISCUSSION

Our experimental results underscore the suitability of vari-
ous clustering techniques for precise 3D multi-target position-
ing using mmWave sensing. Among the evaluated method-
ologies, K-Means and DBSCAN clustering have emerged
as notably promising solutions, although for different rea-
sons. K-Means has consistently delivered the most compelling
outcomes across the two experimental setups, successfully
identifying all intended clusters. This achievement aligns with
expectations, given the algorithmic design of K-Means, which
necessitates a predefined input for the number of clusters
(K). However, despite its overall success, K-Means exhib-
ited limitations in certain instances, failing to distinguish all
clusters accurately. While correctly predicting the number of
clusters, it sometimes amalgamated two clusters into one or
erroneously identified an outlier as a separate cluster. Nonethe-
less, K-Means demonstrated significant promise, achieving a
3D positioning accuracy of 0.23m in Setup A with 5 clusters
and 0.25m in Setup B with 6 clusters. DBSCAN showcased
commendable performance, particularly in Setup A, which
identified all 5 clusters with a 0.22m accuracy. However,
its performance faltered in Setup B, where it struggled to
differentiate between 2 proximate targets, often merging them
into a single cluster. This limitation is anticipated due to
DBSCAN’s inherent design, highlighting its ability to cluster
without a predefined number of clusters, juxtaposed with its
difficulty in separating closely situated clusters. Nevertheless,



DBSCAN managed to identify 4 out of 6 clusters with a 0.27m
accuracy in Setup B. Affinity Propagation presented as an
intriguing alternative, identifying all clusters in both setups
with a 0.29m accuracy. However, it overestimated the number
of necessary clusters, which could pose complications in
real-time operations. Additionally, its execution time, ranging
between 1 and 2.5 seconds, is considered significant, marking
a substantial drawback for real-time performance. BIRCH did
not perform satisfactorily in either setup, failing to recognize
all clusters and only identifying 3 clusters in both setups.
It exhibited the lowest accuracy among the tested clustering
approaches, with 0.35m in Setup A and 0.32m in Setup B
while its execution time was also as high as 1-1.5 seconds,
indicating its unsuitability for real-time applications.

Although prior studies (e.g., [7]) show that fusing mmWave
and camera data can boost localization accuracy and prevent
closely spaced targets from being merged into a single detec-
tion, privacy-sensitive scenarios may demand relying exclu-
sively on mmWave sensing. Compared to the work reported
in [9] that fuses only two FMCW radars and assesses a single
density-based clusterer plus UKF in 2-D people-tracking sce-
narios—yielding XY −RMSE ≈ 0.25m—our work deploys
five IWR1843 radars positioned around the scene, captures
laser-surveyed ground truth in full 3D, and systematically eval-
uates four distinct clustering families (K-Means, DBSCAN,
Affinity Propagation, BIRCH) on both well-separated and 1
m-spaced targets. This denser sensor geometry and broader
algorithmic sweep cuts end-to-end processing to ≈ 2ms while
sustaining similar accuracy (0.22–0.25m).

VI. CONCLUSION AND FUTURE WORK

In our study, we evaluated the use of mmWave radar
technology for accurate 3D localization of multiple targets.
We evaluated four clustering algorithms across different ex-
perimental setups to determine their effectiveness in real-
world scenarios. Our findings indicate that K-Means and
DBSCAN stand out for their accuracy and robustness in
3D positioning, with K-Means achieving cluster identification
accuracies around 0.23m and 0.25m in different setups. DB-
SCAN showed similar accuracy in one setup but struggled
with closely placed objects in another, revealing its limitations.
Affinity Propagation and BIRCH, despite certain benefits, face
challenges that may limit their applicability for real-time 3D
positioning tasks. The comparative analysis performed high-
lighted the critical need for tailored clustering approaches that
can adapt to the specific requirements of various positioning
applications.

This research confirms the viability of mmWave radar for
precise 3D indoor mutli-target localization and emphasizes the
crucial role of appropriate clustering techniques to enhance
positioning accuracy. It opens avenues for future work to
improve these methods and investigate new algorithms by
varying the number and size of objects, the number of sensors
used, the range of cluster environments, etc. The experimental
setup involves suspended objects in a controlled laboratory
environment, which may not fully capture the complexity

of real-world indoor scenarios, where obstacles, occlusions,
and clutter can significantly impact sensor performance and
clustering accuracy. Future work will incorporate more real-
istic targets—such as moving people or flying drones—and
introduce dynamic environmental conditions to better reflect
dynamic environmental changes.
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