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Abstract 
 
This report describes the concept, requirements and specifications of the technologies investigated in the 

project as well as the use case scenarios and the respective KPIs for the validation and verification of the 

system components and prototypes.  
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1 Introduction to the Project 

1.1 Concept and Objectives 

The general objective of this project is the adaptation of existing technologies used in a precision agriculture (PA), into 

an indoor (greenhouse) prototype system which includes the use of both an unmanned ground and aerial vehicles (UGV 

and UAV). The term precision agriculture refers to the use of information technologies (IT) to help farmers manage the 

optimal growth of their crops thus ensuring profitability and sustainability. Furthermore, PA has also been known to 

help the environment by avoiding unnecessary spaying of pesticides as well as excessive use of water and fertilisers. 

The use of unmanned systems offers higher spatial resolution data compared to satellites. The real-time data of interest 

to the farmers and management tools/software includes soil properties such as moisture, compaction, salinity and 

nutrients (nitrogen (N), phosphorus (P) and potassium (K)), and crop monitoring which includes vegetation indexes such 

as Chlorophyll, Leaf Water, Ground Cover, Leaf Area, Normalised Difference Vegetation Index (NDVI), etc. UAVs have 

been used in PA for bird eye view, for insect identification using cameras and Lidars, and even actuators for autonomous 

spraying of pesticides, whereas the use of UGVs provides bottom-up capabilities identifying insects hiding under the 

leaves and for crop planting and harvesting. The innovation of this project is the UGV and UAV for indoor (greenhouse) 

PA applications where GPS signals are very weak or non-existent. In addition, this work will validate high-precision cm-

level, 3D positioning techniques required for unmanned vehicle indoor localisation and navigation 

1.2 Innovation and Originality 

For many years, scientists and researchers with multidisciplinary backgrounds have been actively pursuing the utilization 

of unmanned systems for precision agriculture applications. However, most of the focus has been on outdoor 

applications mainly to satisfy the needs of farmers with vast farmland areas where a navigation accuracy in the range 

of 2-3 meters can be achieved using Global Navigation Satellite Systems (GNSS). None of the literature considers so far 

extending to indoor PA applications where GNSS performance and accuracy rapidly deteriorates. Worth noting that 

Cyprus greenhouse agriculture has been considered as “the most intensive and energy consuming horticultural 

systems”. Hence, this work proposes the implementation and testing of existing 2D and 3D indoor localization 

algorithms. With a cm-level accuracy then unmanned systems can be deployed in greenhouses to help farmers manage 

the optimal growth of their crops thus ensuring profitability and sustainability. Members of this project have 

extensive/expertise and track record of publications/research that demonstrates submeter-level accuracy in 2D and this 

project will be a unique opportunity to implement and test the performance of these algorithms for the demanding and 

dynamic application of indoor unmanned system navigation 

Following the research trends in precision agriculture crop monitoring and vegetation indexes, we consider an image 

processing algorithm which utilizes a deep learning convolutional neural network. This algorithm will be an extension of 
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a newly developed system at the Inspire Research Center which accurately identifies fire, smoke, the types of 

atmospheric clouds as well as people and objects. The system is compact and lightweight that can easily be integrated 

on small UGV and UAV). The UGV and UAV will provide bottom-up and bird-eye views respectively of the vegetation. In 

addition, the UGV will be equipped with off-the-shelf sensors for soil humidity, pH and organic content which is essential 

data for the optimization process of irrigation and fertilization. 

1.3 Added Value and Benefits 

According to the Cyprus department of agriculture, the agricultural sector contributes 2,4% of the national GDP with 

the crop production contributing 35% of the total value added. On the other hand, Green Houses only occupy 0,5% of 

the total cultivated area, mostly because they are considered as the most intensive and energy consuming horticultural 

systems. Furthermore, according to the EU common agricultural policy (CAP) the first objective is to ensure a fair income 

to farmers and the second is to increase competitiveness. As reported for Cyprus for years 2005 to 2018, the agricultural 

income per worker is on average about 61% of the average wage in the whole economy, and also Cyprus has the lowest 

share of young farmers in the total number of farm managers in the EU in 2016 (1.3%). 

This project aims towards the development of optimized outputs (irrigation, fertilization, pest control etc) which will 

significantly decrease the agricultural production costs in greenhouses. This competitiveness will promote the expansion 

of greenhouse use which will result in positive contributions towards farmers’ wages, the national GDP and also attract 

the interest of young people to be involved. 

Furthermore, high precision positioning is empowering additional life-changing applications such as emergency and 

natural disaster situations where wireless and the terrestrial networks are destroyed. UAVs and UGVs can serve as 

emergency platforms to provide wireless coverage for users and the first responders as well as video coverage for the 

emergency control centre. It is becoming evident that there is a more than ever need for high precision 3D positioning 

to empower the development of applications with very high economic and social impact and this project is expected to 

contribute towards this goal by adopting the most up-to-date positioning technologies to demonstrate and prove in the 

lab the feasibility of indoor unmanned system navigation and localization. 

1.3.1 References 

[1] Cyprus Ministry of Agriculture, “Rural Development and the Environment”, Online Posting: 

https://moa.gov.cy/?lang=en  [Accessed 29/9/22].  

[2] European Commission Agricultural and Rural Development, “Key policy objectives of the new CAP”, 

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/new-cap-2023-27/key-

policy-objectives-new-cap_en  [Accessed 29/9/22]. 

https://moa.gov.cy/?lang=en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/new-cap-2023-27/key-policy-objectives-new-cap_en
https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/new-cap-2023-27/key-policy-objectives-new-cap_en
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[3] European Commission Agricultural and Rural Development, “Cyprus Analytical 

Factsheet”https://ec.europa.eu/info/sites/default/files/food-farming- 

fisheries/by_country/documents/analytical_factsheet_cy.pdf   [Accessed 29/9/22]. 

1.4 Aims and Objectives 

1.4.1 Aim 

Concerns among the EU member states as indicated by the EU common agricultural policy (CAP) is that farming 

competitiveness and farmers’ income has declined and as a result so did the number of young people following the 

profession. In addition, Cyprus greenhouse agriculture has been considered as “the most intensive and energy 

consuming horticultural systems”. On the other hand, an abundance of literature shows that Precision Agriculture (PA) 

using Unmanned Ground and Aerial Vehicles (UGV and UAV) has helped farmers manage the optimal growth of their 

crops thus ensuring profitability and sustainability. However, for indoor applications, the bottleneck and Achilles heel 

of these technologies is the dependency on the navigation systems which rely purely on Global Navigation Satellite 

Systems (GNSS) whose performance rapidly deteriorates in satellite-obstructed environments. This opens research 

opportunities with engineers exploring new technologies such as Ultra-Wideband (UWB), millimetre-Wave (mmWave), 

antenna arrays and Internet of Things (IoT) aiming at sub-meter level accuracy. DEMETRA will push the research envelope 

for indoor positioning by deploying state of the art 2D and 3D positioning algorithms for UGV and UAV navigation 

respectively. 

1.4.2 Technical Objectives 

The vision of DEMETRA is to demonstrate the ability and applicability of unmanned systems for greenhouse/indoor 3D 

precision agriculture. For the vision to be achieved the following technical requirements have been set: 

TO1) Validate through measurements and assess the performance of the state-of-the-art 2D and 3D positioning 

techniques for Indoor UGV and UAV Navigation. This includes the setting up of experiments according to pre-

defined scenarios to validate the existing techniques as reported in the literature and assess their performance 

against set KPIs. This also includes a sensitivity analysis of the techniques considering various environmental 

and other conditions. For example, the growing crops and vegetation inside the greenhouse will affect the 

positioning accuracy through multipath fading and signal strength variations. All these will have a direct effect 

on the positioning accuracy therefore a sensitivity analysis on the factors that affect the accuracy will be 

conducted.   

TO2) Validate the performance of the UAV multispectral imaging system capabilities. This includes the setting up of 

real-life experiments according to pre-defined scenarios to validate existing image processing algorithms as 
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reported in the literature and assess their performance against set KPIs. For instance, the robustness of the 

image processing algorithm when subjected to the UAV vibration interference conditions.  

TO3) Validate the performance of the UGV soil properties sensors: This includes the setting up of real-life 

experiments according to pre-defined scenarios to calibrate and validate the sensor measurements and assess 

their performance against set KPIs.  

TO4) Integrate the various subsystems to proof the concept of 3D Precision Agriculture. 

1.4.3 Operational Requirements 

For the aforementioned objectives to be achieved the following operational requirements have been set: 

OR1) Literature Review and State of the Art 

 Precision Agriculture 

 Smart Greenhouses 

 Image Processing Techniques and Algorithms for Insect Detection 

 Vegetation Indices 

 Indoor Positioning 

 Image Processing Techniques and Algorithms for Distance Calculation 

OR2) Market Research for Commercially Available Products 

 Cameras for Image Processing Applications 

 Sensors for Precision Agriculture Applications 

 Cameras for Distance Calculation 

 Multispectral Camera for Vegetation Index 

 Indoor Positioning Sensors 

 Unmanned Systems (Ground and Aerial) 

OR3) Purchase of identified sensors and equipment 

OR4) Setup up test-beds (prototypes) to collect related data 

OR5) Data Evaluation 
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2 Literature Review 

2.1 Precision Agriculture Applications 

Aerial systems used for agricultural applications date back to 1906 when seeds were spread over a swamp in New 

Zealand with the aid of a hot air balloon, but it was not until 1997 when an unmanned aerial vehicle (UAV) with Vertical 

Take-off and Landing (VTOL) capabilities, the Yamaha Rmax helicopter, was used for field spraying [1-3]. The high costs 

associated with the use of unmanned systems limited their use predominantly for military applications. However, 

advancements in technology and engineering over the last 20 years, have enabled the production of an abundance of 

sensors and unmanned systems, affordable for commercial applications. The list of such applications includes but it is 

not limited to aerial photography, search and rescue, inspection of power lines, survey of archaeological sites, etc, and 

in more recent years unmanned systems have been used extensively for agricultural applications also known as 

Precision Agriculture (PA). The term precision agriculture refers to the use of information technologies (IT) to help 

farmers manage the optimal growth of their crops thus ensuring profitability and sustainability. Furthermore, PA has 

also been known to help the environment by avoiding unnecessary spaying of pesticides as well as excessive use of 

water and fertilizers. The use of unmanned systems offers higher spatial resolution data compared to satellites. The 

real-time data of interest to the farmers and management tools/software includes soil properties such as moisture, 

compaction, salinity and nutrients (nitrogen (N), phosphorus (P) and potassium (K)), weather data (temperature and 

relative humidity), and crop monitoring which includes vegetation indexes such as Chlorophyll, Leaf Water, Ground 

Cover, Leaf Area, Normalized Difference Vegetation Index (NDVI), etc. UAVs have been used in PA for bird eye view, for 

insect identification using cameras and Lidars, and even actuators for autonomous spraying of pesticides, whereas the 

use of UGVs provides bottom-up capabilities identifying insects hiding under the leaves and for crop planting and 

harvesting. An extensive literature review is provided by review papers [1] and [4-12] which cite more than 1285 works 

whereas [13] alone cites 1318 related works. The importance of unmanned systems and agriculture is clearly indicated 

by their market share. According to Business Insider [14] the UAV market has surpassed $12 billion in 2021 and more 

specifically the UAV market for agricultural applications based on Global Market Insights [15] is forecasted to exceed $1 

billion by 2024. Furthermore, concerns on climate change and the forecasted increasing global population by year 2050 

reaching 10 billion, identify a mandatory increase on the production of agricultural goods in the range of 70% [16-17]. 

According to Allied Market Research [18], in the last 5 years, PA has been growing by 14.9% and is expected to reach 

$7.8 billion by 2022. 

PA incorporates the use of information technologies (IT) to help farmers manage the optimal growth of their crops thus 

ensuring profitability and sustainability. Derived from literature PA is best described with the following block diagram. 
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Figure 1: PA Block Diagram Derived from Literature 

The extensive literature agrees that the use of unmanned systems provide a more optimized approach to precision 

farming. Most of the data collection can be achieved with the use of cameras (RGB, Thermal, NIR and Multispectral), 

Light Detection and Ranging (LiDAR), and there are also miniaturized specialized sensors for weather conditions as well 

as soil properties (composition, compaction, salinity, etc). Nowadays, there is an abundance of cameras and LiDARs 

ranging from 90 grams up to 1.3kg which enables the use of UAVs with low payload capabilities. 

In the case of unmanned aerial vehicles, the preferred choice includes helicopters and/or multi-copters because of 

higher flexibility and maneuverability compared to fixed wing planes, whereas the use of unmanned ground vehicles 

adds an added valued towards planting, fertilizing, spraying and harvesting. 

Finally, all the literature shows PA using unmanned systems limited to outdoor applications and none of the literature 

is for indoor (i.e., greenhouse) applications which would be beneficial for Cyprus. The bottleneck and Achilles heel of 

these technologies is the dependency on the navigation systems which rely purely on Global Navigation Satellite 

Systems (GNSS) whose performance rapidly deteriorates in covered areas. 

2.1.1 References 

[1] del Cerro, J.; Cruz Ulloa, C.; Barrientos, A.; de León Rivas, J. Unmanned Aerial Vehicles in Agriculture: A Survey. 

Agronomy 2021, 11, 203. https://doi.org/10.3390/agronomy11020203. 

[2] Sugeno, M.; Hirano, I.; Kotsu, S. Development of an intelligent unmanned helicopter. In Proceedings of the 1995 IEEE 

International Conference on Fuzzy Systems, Yokohama, Japan, 14–20 March 1995; Volume 5, pp. 33–34. 

[3] Yamaha Motors, “Yamaha Rmax Helicopter”, Online Posting: 

https://www.yamahamotorsports.com/motorsports/pages/precision-agriculture-rmax [Accessed 9/8/21].  

[4] P. R. Grammatikis, P. Sarigiannidis, T. Lagkas and I. Moscholios, “A compilation of UAV applications for precision 

agriculture”, Science Direct, Computer Networks 172 (2020) 107148. 
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2.2 Smart Green Houses 

Controlled plant growth has existed since the roman times, during which roman gardeners artificially grew cucumber-

like vegetables every day. More specifically they planted the vegetables in wheeled carts and during the day they put 

them out in the sun but at night time they were taken inside. The first description of a greenhouse that used controlled 

temperature is in 1450s from a Korean cook book called Sanga Yorok. A traditional architecture called Ondol was used 

in this instance to artificially grow vegetables and assist in ripening the fruits. Ondols utilized a traditional underfloor 

heating system and cob walls to maintain heat and humidity and semi-transparent windows that allow sunlight 

infiltration whilst protecting the plants from the elements outside (Anon., 2021). 

Greenhouses were initially referred to as botanical gardens which was later changed due to the introduction of the term 

“greenhouse effect”, describing the way a portion of the sun’s heat is absorbed by the earth’s atmosphere. Greenhouses 

work in a similar way, absorbing sunlight to warm up the structured area, which is why they are almost exclusively called 

“greenhouses” at this point (Hunt, 2021). 

Greenhouses nowadays are structures used for plant growth in a controlled environment, with walls and roof made 

mostly out of transparent materials (usually glass) (figure 1). The equipment used in greenhouses includes actuators 

like heating, cooling, lighting and servos that are sometimes controlled by computers or microcontrollers. They are 

usually used to overcome issues short growing season or areas with poor sunlight and other environmental factors that 

affects negatively plant growth. In addition greenhouses allow specific crops that are seasonal to be cultivated 

throughout the year (Anon., 2021).  

Considering that demand for food production is growing by the day, if the estimation that by 2050 the world population 

will reach 9.9 billion people (IISD, 2020), greenhouses will become more valuable. This is the reason why greenhouses 

should implement new technologies such as IoT, sensors and actuators in order to maximize the production efficiency 

will also minimizing the waste of resources and environmental pollution.  

This is where “Smart Greenhouses” come into play. The main goal of a smart greenhouse is to maximize agricultural 

production while simultaneously maintain quality. Domestic greenhouse management today uses a more traditional 

and manual form of management for the most part, for example adjusting light, temperature, humidity and other 

parameters manually and based on experience. Smart greenhouses therefor can alleviate that with the usage of sensors 

and actuators that are more efficient, precise and also require less management costs (Li, et al., 2017). 
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Figure 2: Gothic Type Green House 

 

A Smart Greenhouse, much like a regular greenhouse, creates a self-regulating microclimate optimal for plan growth 

through the usage of sensors, actuators and monitoring and control systems which enhance the plants growing 

conditions by atomizing the growth process (Ltd, 2021). 

A fully functional unit for measuring and managing the internal environmental conditions of a greenhouse, was designed 

by Dr. Panos in February of 2021 (Fig. 3). 

 

Figure 3: Dr. Panos's Smart-Greenhouse (Panos, 2021) 

For the design of the specific smart greenhouse the components were an Arduino Uno, an Arduino Ethernet Rev.3, a 

DHT11 Temperature & Humidity sensor (4 pins), a DHT22 Temperature Sensor, an Ultrasonic Sensor – HC-SR04 

(Generic), a DFRobot Gravity: Analog Soil Moisture Sensor, a Seed Grove – Gas Sensor (MQ2), a PIR Sensor (7m), an 

Axial Fan, a Brushless Motor, a Digilent 60W PCLe 12V 5A Power Supply and a DC Water Pump. The purpose of using 

this equipment is the monetarization and control, in real time, of the temperature, humidity, soil moisture and external 

environmental conditions through a smartphone application. Additionally, through controlled heating and cooling, fire 

and motion detection in the greenhouse and measurement of production growth, energy conservation can be achieved 

(Panos, 2021). 

Avnet’s Smart Greenhouse, is a system that was designed to support plant growth by monitoring energy consumption 

issues and providing a productive crop development under optimal conditions. This system operates by using a 

combination of IoT (Internet of Things), AI (Artificial Intelligence) and ML (Machine Learning) technologies in order to 
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attain an ideal greenhouse automation system. Moisture, pH, temperature, photometric, electrochemical and humidity 

sensors, CO2 level and water, energy and photosynthesis meters are being used for the design of the Avnet’s Smart 

Greenhouse. This combination of equipment offers real time diagnosis, optimal irrigation, remote management, 

reduction of harvest failures and information such as water and energy consumption and the fertility level of the soil 

(Company, 2021). 

FarmRoad, Folium Wireless Multisensors (figure 3) is another example of a system being used in order to optimize the 

functionality of greenhouses.  

 

Figure 4: Folium Wireless Multisensors (FarmRoad®, 2022) 

It consists of battery-operated devices which aids producers to determine several problems that can occur in a 

greenhouse. Therefor multiple units form a single wireless sensor network that to offers environmental data at scale. 

To accomplish this each Folium is equipped with temperature, relative Humidity (RH), CO2, PAR (Photosynthetically 

Active Radiation light sensor), RAD (Solar Radiation) Light, Barometric Pressure (BP), plant temperature and 

Soil/Substrate moisture sensors. 

For the 4-sensor unit pack (Professional) the price is 3,997 dollars (3499.87 euro) and it includes 4 Folium multisensors 

units, 1-year software subscription ($49/month/unit thereafter), free on boarding training and  

A self-described smart and ubiquitous controlled-environment agriculture system called AgriSys focuses on sensors 

along the lines of air temperature, air humidity, soil moisture, soil PH, and light intensity. More specifically a temperature 

unit was utilized for the purpose of protecting the plans from either high or low temperatures. AgriSys also claims that 

it conserves water and decreases human power in agriculture (Abdullah, et al., 2016). 

A group of university students, designed an intelligent management system for agricultural greenhouse based on the 

internet of things (IoT). The system includes temperature and humidity sensors, lighting, and irrigation equipment. 

Additionally, the system was designed to include a warning system and to operate from the network by using the ZigBee 

wireless communication network. All this equipment was devised to be managed by AT89C52 microcontroller (Li, et al., 

2017). 
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Another system showcases an irrigation system for smart agriculture that is fully automated and is operated and 

monitored by an ARM9 (AT91SAM9G45) processor. This system monitors regularly the pH and nitrogen content in soil 

and can notify the user about temperature, moisture content and CO2 percentage via the usage of the GSM module. 

The sensors used for the system are LM35 temperature sensor, SY-HS-220 humidity sensor and copper electrodes are 

used to determine the soil moisture. The system additionally makes use of a LCD controller, camera interface, audio, 

resistive touchscreen, Ethernet and high-speed USB and SDIO (Kavianand, et al., 2016). 

Students from a department of computer science and technology in China, proposed an intelligent monitoring system 

for greenhouses that uses an android platform in order to monitor parameters (air temperature, moisture, soil 

temperature, CO2 percentage) from mobile handsets. It promises real time video monitoring, maintenance and 

management from anywhere around the world will also being stable, cheap and easy to manage. The system makes 

usage of the advancement of wireless technology, microelectronics and wireless sensor networks. The wireless sensor 

network is based on ZigBee that has a bug scale, small volume and low cost and it provides the prospect of self-

organizing, self-configuring and self-diagnosing which provides the remote management and monitoring (Liu, et al., 

2017). 

An IoT based Smart Greenhouse was proposed in 2016 by three Indian students. The irrigation system in this project 

uses an automatic drip irrigation that operates based on a specific soil moisture threshold set accordingly to an optimal 

amount of water required by the plants. The smart greenhouse also makes use of drip fertigation technics according to 

information from several minerals found in the soil. In addition foggers are also utilized to control temperature and 

humidity along with humidity and temperature sensors (Ravi , et al., 2016). 

By using wireless communication technologies, another proposed smart greenhouse, connects a smart sensing system 

with a smart irrigation system by using a PLC. The system centres around parameters like soil moister content nutrient 

content and pH of the soil among the usual other parameters (temperature, light intensity, CO2 percentage, and air 

humidity). This smart greenhouse consist of sensors, microcontrollers and a GSM module that provides communication. 

The sensors include moisture, spectroscopy, IR and opto-coupler sensors whilst the microcontroller used for the smart 

irrigation system specifically is the ATMEGA 328 (Chetan, et al., 2015). 

Plenty greenhouse was launched in January 2020 in Larnaca, Cyprus and it covers 10,000 square meters of land 

accompanied with 85 square meters of store packaging facilities (Fig: 5). 
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Figure 5: Planty Greenhouse in Larnaca, Cyprus (Planty, 2020) 

It uses a method called Nutrition film technique (NFT), which is a hydroponic method of growing plants. More specifically 

the roots of the plants are submerged in a shallow stream of re-calculating solution that contains essential minerals for 

optimal plant growth (Fig. 6). 

 

Figure 6: Nutrition film technique (NFT) (Planty, 2020) 

The facility also specializes in microgreens production using the Expanding Nursery Technique. Microgreens are very 

small vegetables that are 8 to 14 days old and just had their first leaves developed (Planty, 2020). The controller used 

in the facility is PLC (Programmable Logic Controller) that manages all the sensors and actuators, such as servos, heaters, 

coolers, lights, fans, temperature sensors, humidity sensors, pH sensors, etc. 

Table 1: Comparison of Technologies from Related Works 

Related 

Works 
Controller & Sensors Used Actuators Used 

Type of the 

Connection 
Result 

1 

 Arduino Uno 

 Arduino Ethernet (Rev.3) 

 DHT11 Temperature & 
Humidity sensor 

 DHT22 Temperature Sensor 

 Ultrasonic Sensor – HC-SR04 

 Axial Fan 

 Brushless Motor 

 Digilent 60W PCLe 12V 
5A Power Supply 

 DC Water Pump 
 

 

 

 

 

 

 Monetarization and control, in real 
time, of the temperature, humidity, soil 
moisture and external environmental 
conditions through a smartphone 
application. 

 Through controlled heating and cooling, 
fire and motion detection in the 
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Related 

Works 
Controller & Sensors Used Actuators Used 

Type of the 

Connection 
Result 

 DFRobot Gravity: Analog Soil 
Moisture Sensor 

 Seed Grove – Gas Sensor 
(MQ2) 

 PIR Sensor 
 

Wired greenhouse and measurement of 
production growth, energy 
conservation can be achieved. 

2 

 Moisture sensor 

 pH meter 

 Temperature sensor 

 Photometric sensor 

 electrochemical and humidity 
sensors 

 CO2 level sensor 

 Photosynthesis meter 

 

 

- 

 

Wired 

& 

Wireless 

 Real time diagnosis 

 Optimal irrigation 

 Remote management 

 Reduction of harvest failures 

 Information such as water and energy 
consumption 

 Fertility level of the soil 

3 

 Temperature sensor 

 Relative humidity sensor  

 CC2 level sensor 

 PAR (Photosynthetically 
Active Radiation light sensor) 

 RAD (Solar Radiation) Light 
sensor 

 Barometric Pressure (BP) 
sensor 

 plant temperature sensor 

 Soil/Substrate moisture 
sensors 

 

 

 

 

- 

 

 

 

 

 

 

 

 

 

Wireless 

 Optimize the functionality of 
greenhouses 

 Help in the determination of several 
problems that can occur in a 
greenhouse 

 Offers environmental data at scale 

4 

 Soil thermocouple sensor 

 pH sensor 

 Environmental temperature 
sensor 

 Light sensor 

 Soil moisture sensor 

 Fan 

 Pump 

 Motor 

 

 

Wired 

 

 Conserves water usage 

 Decreases required human power 

5 

 Temperature sensor 

 Humidity sensor 

 Lighting sensor 

 AT89C52 microcontroller 

 Irrigation system 

 ZigBee wireless 
communication network 

 

Wireless 

 Wireless monitoring 

 Wireless warning system 

 Wireless operation 

6 

 ARM9 (AT91SAM9G45) 
processor 

 pH meter  

 Nitrogen meter 

 Moisture sensor (copper 
electrodes) 

 CO2 percentage meter 

 LM35 temperature sensor 

 SY-HS-220 humidity sensor 

 GSM module 

 LCD controller 

 Camera interface 

 Audio 

 Resistive touchscreen 

 Ethernet 

 high-speed USB 

 SDIO 

 

 

 

Wired 

& 

Wireless 

 The system consumes less water  

 Less human power needed 

7 

 Temperature sensor 

 Humidity sensor 

 Soil moisture sensor 

 CO2 percentage meter 

 Light sensor 

 ZigBee 

 Fan 

 Lamp 

 DC motor 

 

Wireless 

 Real time video monitoring 

 Wireless maintenance & management 

 Cheap 

 Easy to manage 

 Solar power supply 

8 

 Intel Gen 2 

 Arduino 

 Arduino IDE 

 Ultrasonic Sensor 

 Regrowing LED light 

 RFID tag & sensor 

 Peliter fan 

 GSM sim900a 

 LCD for display 

 Relays 

 Pumps 

 Peltier 

 Light 

 Fogger 

 

Wired 

& 

Wireless 

 Uses an automatic drip irrigation 

 Less human power needed 

 It can be placed and operated on any 
given  environment to grow any kind of 
vegetation 

 Solar & wind energy source 
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Related 

Works 
Controller & Sensors Used Actuators Used 

Type of the 

Connection 
Result 

9 

 PLC 

 Microcontroller ATMEGA 328 

 Moisture Sensor 

 Spectroscope sensor 

 IR sensor 

 GSM module 

 Motor 

 IC L293 

 Optocoupler 

Wired 

& 

Wireless 

 

 

 Less human power needed 

 The system consumed less water 

10 

 PLC (Programmable Logic 
Controller) 

 Temperature sensors 

 Humidity sensors 

 pH sensors 

 etc 

 heaters 

 coolers  

 lights 

 servo 

 fan 

 etc 

 

Wired 

 Conserves water usage 

 Decreases required human power 

 Easy to manage 

 Optimize the functionality of 
greenhouses 

 Help in the determination of several 
problems that can occur in a 
greenhouse 

 

 

The literature review done for the purposes of the project helped focusing on the specific parameters that a greenhouse 

requires to monitor and adjust in order to successfully create an optimal microclimate for the plants. These parameters 

were narrowed down to temperature, humidity, carbon dioxide (CO_2), soil moisture, light intensity, water tank level 

and pH of the water. It additionally provided information about some of the commercially available products used in 

the greenhouses shown.  
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2.3 Image Processing Algorithms for Small Unmanned System Applications 

Climate change, has been responsible for the rapid increase of the size and frequency of forest/wild fires, which pose 

severe socioeconomic (the destruction of homes and loss of life) and environmental impact (carbon emissions, air and 

water quality) [1]–[5]. According to World Health Organization (WHO), 50% of recorded wildfires are from unknown 

origins and while the period between 1998-2017 affecting 6.2 million people and being responsible for 35,000 fatalities 

[6]–[8]. Other worldwide statistics report that wildfires were responsible for Australia’s 2009 ’Black Saturday’ 

destruction of 1,800 homes and burnt area of 4,500 km2 whereas in 2017, 10,200 structures and 5,559 km2 in California, 

USA, and 4,180 km2 in Portugal [9]. The cost of wildfires damage is typically between 10 to 50 times the suppression 

estimated worldwide to be more than $100 billion annually [10]. 

Early warning methods and systems include the use of watchtowers, sensor networks, satellite remote sensing and 

patrolling using manned and unmanned aerial vehicles (UAVs). A comprehensive review of the aforementioned 

methods of early fire and smoke detection systems presented in [11] indicates that satellite systems provide a vast 

coverage area, but their response time depends on the location of the satellite and fire, while terrestrial sensor networks 

offer high accuracy and fast response times but their wide coverage is typically associated with significant increase in 

cost and system complexity. It seems that the use of small UAVs offers the highest future potential mostly because of 

their fast response time and extendable coverage area. 

Advancements in technology and engineering over the last 20 years, have enabled the production of an abundance of 

sensors and unmanned systems, affordable for commercial UAV applications. The list of such applications includes but 

not limited to aerial photography [12], search and rescue [13], traffic monitoring [14], precision agriculture [15] and 

more. According to Business Insider [16] the UAV market has surpassed $12 billion in 2021. Computer vision (image 

processing algorithms) using cameras has gained popularity in UAV applications. However, the cumbersome processing 

of real-time target detection algorithms, requires additional single board computers (SBC) to avoid possible interference 

with the navigation systems. Due to the strict run-time and payload availability on small and medium UAVs, the selection 

of onboard hardware is best addressed as a constraint optimization engineering process [17]. An elaborate comparison 

of the state of the art of commercially available SBC is examined by [18]. The study examined the UAV electrical power 

consumption due to the integrated SBC processing and its additional onboard weight. As concluded the Raspberry Pi 

(RPi) and Odroid platforms offer the lowest power consumption followed by the Jetson. 

The aim of this work is the development of a fire detection system for small UAV applications. Taking into consideration 

the current research progress in deploying target detection algorithms on embedded devices, and hardware and 

practical considerations, the research objectives include: The development of a computer vision target detection 

algorithm with reduced false alarm rate that is able to run on a compact, lightweight, and cost-effective SBC, such as 
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RPi-4B while its performance is comparable to the state-of-the-art metrics (accuracy and real-time response) under 

real-life wildfire scenarios. 

Ample of recent review papers [19]–[25] in fire detection and UAV applications, referencing more than 500 publications 

combined, conclude that convolutional neural networks (CNNs) which are a branch of deep learning algorithms, are 

currently achieving the best results in target detection and classification. Two-stage algorithms (R-CNN, Fast R-CNN, 

Faster R-CNN) [26]–[28] need to use the heuristic (selective search) or CNN network (RPN) to generate Region Proposal, 

and then do the classification and regression on Region Proposal. The other type of one-stage algorithms (YOLO, SSD) 

[29], [30], which uses only a CNN network to directly predict the class and location of different targets. The first method 

is more accurate but slower while the second algorithm is faster but less accurate. However, either networks usually 

require graphics processing units to operate properly because they are computationally challenging, use large amounts 

of memory, and are expensive to run. Therefore, deploying realtime target detection algorithms on SBC without 

powerful computing power is one of the current challenges of computer vision. Hence, works reported in the literature 

[31]–[33] examine the performance of ”You Only Look Once” (YOLO) network which is becoming the most popular 

object detection model for SBC. As presented, the YOLO versions “tiny”, offer higher inference speed (FPS) which 

however comes at a compromised reduced accuracy because of the reduced number of layers on the network. A 

successfully deployed YOLOv4 algorithm on a RPi platform achieving an improved inference speed to 2 FPS was reported 

in [34] while a YOLOv5 algorithm deployed on an unmanned aerial vehicle (UAV) for dynamic beehive detection and 

tracking achieving an inference speed of 0.5 FPS on RPi4 is reported in [35]. 

Nevertheless, this speed is still not fast enough for UAV applications, hence researchers began to experiment with 

deploying target detection algorithms on the NVIDIA Jetson Nano, at the expense of higher power consumption. An 

Improved YOLOv5 based Real-time Spontaneous Combustion Point Detection Method was proposed using “FPN + PAN” 

in the Neck layer of YOLOv5 algorithm to enhance the detecting the smoke or flame in early stage and achieved 7 FPS 

speed in real-time video stream on NVIDIA Jetson Nano [36]. Finally, the authors of [37] used a single-shot object 

detector based on deep convolutional neural networks (CNNs) deployed on Odroid-XU4 achieving 8-10 FPS with a 

accuracy around 95% and 5-6 FPS at 95% on a RPi3B. However, in both cases the CPU usage reached 100%. 
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2.4 3D Positioning and Tracking Using AI Cameras 

Indoor localization is significantly affected by the limitations of traditional techniques and algorithms which rely on the 

Global Navigation Satellite Systems (GNSS) whose accuracy deteriorates in sheltered areas. Advancements in technology 

and manufacturing engineering have enabled the expansion of Internet of Things (IoT) as well as miniature unmanned 

systems (UAS) which desperately need accurate indoor localization algorithms. This need reignited the interest of the 

research community to tackle this problem. Review papers [1] and [2] with more than 300 references provide an 

extensive comparison of the current state-of-the-art on 3D indoor positioning systems using radio frequency 

technologies (WiFi, UWB, mm-wave, etc) including geometric approaches like angle of arrival (AoA), time of arrival 

(ToA), time difference of arrival (TDOA), fingerprinting approaches based on Received Signal Strength (RSS), Channel 

State Information (CSI), Magnetic Field (MF) and Fine Time Measurement (FTM) as well as fusion-based and hybrid-

positioning techniques. Additional approaches to indoor positioning are based on light (LIP – light based indoor 

positioning) where photo-diodes and/or cameras track the reflected visible or infrared light. Worth noting, that LIP 

systems are not affected by electromagnetic interference. An elaborate review of LIP systems is presented by [3]. Both 

LIP and RF technologies offer positioning accuracy in the centimeter (cm) range. However, none of the aforementioned 

technologies can provide object identification and tracking, hence opening a new area of research study. 

Cameras have been successfully used for 3D indoor positioning applications using image processing techniques. In the 

area of medicine the use of a camera improved the “auto-positioning” accuracy in the mm-range by detecting the body 

contours for patients undergoing computed tomography (CT) [4]. In [5], a single camera was localized with an accuracy 

of 10mm in a known environment using the Perspective-n-Point (PnP) algorithm. However, as stated the accuracy 

depends on pre-computed 3D map of the environment which includes the 3D point clouds with co-registered intensity 

information. On the other hand, for unknown environments, indoor localization can be achieved using the Simultaneous 

Localization and Mapping (SLAM) algorithms [6-7]. For unknown environments, the depth information require the use 

of stereo or Time-of-Flight (ToF) cameras. As reported in [8] the indoor positioning of an unmanned aerial vehicle (UAV) 

was improved by 70% with the addition of a ToF camera as compared to the existing acoustic sensors. 

Object identification and tracking requires the use of a stereo camera. In [9] an unmanned ground vehicle (UGV) with 

the use of camera could calculate the distance and azimuth from a preselected object whereas in [10] the 3D positioning 

of a moving object was estimated with an accuracy in the mm-range. Furthermore, Convolutional Neural Network (CNN) 

algorithms has shown to improve the image processing accuracy for 3D positioning in applications involving robotic 

localization [11-12] and also in industrial applications it improved worker safety, ergonomics and productivity [13]. 

In recent years, the most popular CNN algorithm for real time object detection is the YOLO (You Only Look Once) 

because it can be implemented on low power single board computers (SBC) [14-17]. An accuracy of 94% was achieved 

for Fire Localization in indoor and outdoor environments [18]. With a single camera, in outdoor environments, work 
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[19] identified and tracked a moving boat at a distance of 150m with an accuracy of 10m, whereas work [20] at a distance 

of 50m, identified and positioned a car with an accuracy of 2.5m. Furthermore, as reported in [21] at a distance of 20m, 

a car was positioned with an accuracy of 0.47m whereas a motorcycle with an accuracy of 0.62m. Theoretically, multi-

camera implementation should achieve higher accuracy compared to single camera at the expense of higher processing 

requirements. However, work [22] using 2 cameras at a distance of 10m, reports an accuracy of only 4% which is 

equivalent to 0.4m. The same research identifies two major factors which significantly affect the accuracy of the results. 

First, is the distance between the cameras and second are the bounding boxes from each camera which might be 

considerably different.  Similar, findings and conclusions are also given by [23]. 

 

2.4.1 References: 

[1] F. Zafari, A. Gkelias, and K. K. Leung, “A Survey of Indoor Localization Systems and Technologies”. IEEE 

Communications Surveys & Tutorials, 1–1, 2019. 

[2] A Sesyuk, S Ioannou and M Raspopoulos, “A Survey of 3D Indoor Localization Systems and Technologies”, Sensors 

22 (23), 9380, 2022. 

[3] M. Maheepala, A. Z. Kouzani and M. A. Joordens, "Light-Based Indoor Positioning Systems: A Review", IEEE SENSORS 

JOURNAL, VOL. 20, NO. 8, APRIL 15, 2020. 

[4] R. Booij, R. P.J. Budde, M. L. Dijkshoorn and M. V. Straten, "Accuracy of automated patient positioning in CT using a 

3D camera for body contour detection" Springer, European Radiology, Computed Tomography, 2018. 

[5] E. Deretey, M. T. Ahmed, J. A. Marshall and M. Greenspan, "Visual Indoor Positioning with a Single Camera Using 

PnP", 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2015. 

[6] S. Grzonka, G. Grisetti and W. Burgard, "A Fully Autonomous Indoor Quadrotor", IEEE Trans. Robot. 28, 90–100, 

2012. 

[7] M. T. Ahmed, M. Mohamad, J. A. Marshall, and M. Greenspan, “Registration of noisy point clouds using virtual 

interest points,” in Proc. 2015 Canadian Conf. Computer and Robot Vision,  ser. CRV ’15, 2015. 

[8] J. A. Paredes, F. J. Álvarez, T. Aguilera nd J. M. Villadangos, "3D Indoor Positioning of UAVs with Spread Spectrum 

Ultrasound and Time-of-Flight Cameras", Sensors 18, 89, 2018. 

[9] C. T. Chao, M. H. Chung, J. S. Chiou and C.-J. Wang, "A Simple Interface for 3D Position Estimation of a Mobile Robot 

with Single Camera", Sensors, 16, 435, 2016. 



 
  

 

 

Page 33 of 79 
CONCEPT/0722/0100 –  Deliverable D3.1 

[10] A. Islam, M. Asikuzzaman, M. O. Khyam, M. Noor-A-Rahim and M. R. Pickering, "Stereo Vision-Based 3D Positioning 

and Tracking," in IEEE Access, vol. 8, pp. 138771-138787, 2020. 

[11] J. Miseikis, I. Brijacak, S. Yahyanejad, K. Glette, O. J. Elle and J. Torresen, "Multi-Objective Convolutional Neural 

Networks for Robot Localisation and 3D Position Estimation in 2D Camera Images," 2018 15th International Conference 

on Ubiquitous Robots (UR), pp. 597-603, 2018. 

[12] J. Miseikis et al., "Robot Localisation and 3D Position Estimation Using a Free-Moving Camera and Cascaded 

Convolutional Neural Networks," 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 

(AIM), pp. 181-187, 2018. 

[13] A. Munoz, A. Mart´ı, X. Mahiques, L. Gracia, J. E. Solanes and J. Tornero, "Camera 3D positioning mixed reality-based 

interface to improve worker safety, ergonomics and productivity", CIRP Journal of Manufacturing Science and 

Technology Vol. 28, pp. 24-37, 2020. 

[14] H. Feng, et al., “Benchmark Analysis of YOLO Performance on Edge Intelligence Devices”, Cryptography 2022, 6, 16. 

https://doi.org/10.3390/cryptography6020016 

[15] U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in 

Faulty UAVs”, Sensors 2022, 22, 464. https://doi.org/10.3390/s22020464 

[16] M. E. Atik, Z. Duran and R. Ojgunluk, “Comparison of YOLO Versions for Object Detection from Aerial Images”, 

International Journal of Environment and Geoinformatics (IJEGEO), Vol. 9, Issue 2, 2022. 

[17] J. Ye, S. Ioannou, P. Nikolaou and M. Raspopoulos, "CNN based Real-time Forest Fire Detection System for Low-

power Embedded Devices", The 31st Mediterranean Conference on Control and Automation (MED2023), 2023. 

[18] R. R. Nori, R. N. Farhan and S. H. Abed, "Indoor and Outdoor Fire Localization Using YOLO Algorithm", J. Phys.: Conf. 

Ser. 2114 012067, 2021. 

[19] J. Wang, W. Choi, J. Diaz and C. Trott, "The 3D Position Estimation and Tracking of a Surface Vehicle Using a Mono-

Camera and Machine Learning", Electronics, 11, 2141. 2022. 

[20] M. Vajgl, P. Hurtik and T. Nejezchleba, "Dist-YOLO: Fast Object Detection with Distance Estimation", Appl. Sci. , 12, 

1354, 2022. 

[21] R. Waranusast, P. Riyamongkol and P. Pattanathaburt, "Distance Estimation Between Camera and Vehicles from an 

Image using YOLO and Machine Learning," 2022 Asia-Pacific Signal and Information Processing Association Annual 

Summit and Conference (APSIPA ASC), pp. 482-488, 2022. 



 
  

 

 

Page 34 of 79 
CONCEPT/0722/0100 –  Deliverable D3.1 

[22] B. Strbac, M. Gostovic, Z. Lukac and D. Samardzija, "YOLO Multi-Camera Object Detection and Distance Estimation," 

2020 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 26-30, 2020. 

[23] G. Kulathunga, A. Buyval and A. Klimchik, "Multi-Camera Fusion in Apollo Software Distribution", IFAC-PapersOnLine 

Volume 52, Issue 8, Pages 49-54, 2019. 

  



 
  

 

 

Page 35 of 79 
CONCEPT/0722/0100 –  Deliverable D3.1 

2.5 Indoor 3D Positioning Using mmWave Technology 

Location-based services (LBS) are playing a critical role in our life for many years now, the most characteristic example 

being automotive navigation. While initially the need was for outdoor localization, very quickly this need has expanded 

in indoor or more generally in satellite-obstructed environments, where GNSS typically fail. There has been significant 

work reported in the literature [1] over the last 20-30 years which includes many solutions and approaches for solving 

the localization problem in satellite-denied environments using - over the years - the current available radio 

technologies, however none of these solutions has ever been standardized as the universal solution (like GNSS for 

outdoor) for this kind of environments. Someone could find various reasons for this, like the incremental need for more 

and more accuracy, the rapid evolution of wireless (and other) technologies that facilitate the support of this higher 

accuracy which makes the adoption of one system unreasonable if it is going to become obsolete soon, the cost and 

maturity of the underlying technologies to be integrated in mobile devices, etc. Moreover, localization accuracy is 

relatively subject to the application used. For instance, typical GPS-level accuracy (3-10m) would be sufficient for 

automobile navigation, room-level accuracy (2-4m) would be enough to identify the presence of someone in a room or 

area of an indoor environment. Nevertheless, modern smart applications and systems have imposed finer position 

accuracy requirements going down to sub-meter-level and in some very sophisticated applications down to cm-level 

accuracy. Literature reports many works for achieving meter-level accuracy [2, 1]. Most of these works adopt a 

geometric approach to estimate the location by typically utilizing radio-related context like the Received Signal Strength 

(RSS), the Time of Arrival (ToA), the Time Difference of Arrival (TDoA) and the Angle of Arrival (AoA). The accuracy of 

the estimated position is however subject to the accuracy of these signal parameters which depend on the 

characteristics of the underlying radio technology and most importantly on the bandwidth, the frequency, and the 

power of the transmission. Wider bandwidths allow for better resolution in the time domain and hence more accurate 

time resolution and thereafter more precise range and angle estimates to be measured which is then translated into a 

better positioning accuracy. The recent evolution of Ultra-Wideband (UWB) technology in conjunction with its 

deployment in modern smart devices made it attractive for reaching submeter-level accuracy and many works have 

already been reported in the literature.  The wide bandwidth, although it becomes beneficial in terms of positioning 

accuracy, it limits the transmitted power and effectively the range and spatial coverage of UWB systems. For this reason, 

UWB has been established as the most suitable solution to provide sub-meter level accuracy only in open non-

obstructed environments. The need is now shifting also towards obstructed environments and the accuracy 

requirement is going in some cases down to cm-level. In this context mmWave technology appears to be a more 

attractive option.  

Millimetre-wave (mmWave) is defining a new era in modern wireless communication by providing very wide 

bandwidths. This technology is currently used in some Wi-Fi systems (e.g., IEEE802.11ad) and is planned to be used in 

5G and 5G-beyond communications in the near future as the it offers much more flexibility to use wider bandwidths 
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and hence have the strong potential in achieving much higher data rates and capacity. mmWave systems typically 

operate in the frequency range between 30 to 300 GHz. The first standardized consumer radios were in the 60-GHz 

unlicensed band, i.e., 57–64 GHz, where 2-GHz signal bandwidth is typical in applications. The very large availability of 

bandwidth, together with the ease to use massive phase array antennas that allow the estimation of the azimuth and 

elevation angle can be used for achieving 3D cm-level accuracy or better [3]. Additionally, mmWave systems have higher 

transmit power allowance compared to UWB systems which compensates partly the high path losses typically 

experienced at high frequencies. The authors of [4]  propose a multipath-assisted localization (MAL) model based on 

mmWave radar to perform indoor localization. The model considers the multipath effect when describing the 

characteristics of the reflected signal and precisely locates the target position by using the MAL area formed by the 

reflected signal. Experiments show that the model achieves a 3D positioning accuracy within 15cm. Also, the authors of 

[5] have demonstrated the benefits of array antennas towards identifying the orientation of the device. Although their 

work goes back to 2016, it is the very small wavelength at mmWave frequencies that facilitates the development of 

reasonably sized phased arrays that could aid the localization process by providing accurate angular information in 3D.  

Finally, due to this high sensitivity of the mmWave technology, positioning accuracy seems to be strongly correlated 

with the distance away from the target to be positioned. Positioning research using this mmWave technology is still on 

very early stages but early findings demonstrate its strong potential towards achieving the very high accuracy required 

by modern smart applications. The project aims to contribute towards these efforts by proving experimentally this 

concept and investigate the difficulties and challenges that need to be tackled.  

Moreover, while, most of the works reported in literature focus in 2D, nowadays, smart applications have a 3D nature 

requiring the position to be estimated also in the z-dimension, making the need for 3D positioning even more 

predominant. Due to this, there is a growing research interest and activity during the last few years to 

develop/investigate positioning solutions in 3D. For example, the authors of [6] present a practical 3D position 

estimation method using an ankle-mounted sensing device, consisting of inertial measurement units (IMUs) and a 

barometer. Another work in [7] reports a 3D localization method for unmanned aerial vehicles (UAV) based on binocular 

stereovision technology is proposed.  

It is evident that accurate localization systems are expected to play a pivotal role in the next generation of ICT 

technologies therefore it is a necessity to exploit the capabilities of mmWave technology towards achieving the desired 

accuracy. The 3D nature of the emerging applications also requires that this investigation is done in 3D. Therefore, the 

project aims to proof the applicability of mmWave towards achieving cm-level 3D positioning accuracy. 
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2.6 Insects Present in Cyprus 

All figures and details have been retrieved from EPPO (European and Mediterranean Plant Protection 

Organization) Global Database [1]. The database categorizes the organisms and monitors the ‘spread of pests 

including invasive alien plants that damage cultivated and wild plants in agricultural and natural ecosystems. 

The database describes species of interest to agriculture providing scientific names, and geographical 

distribution, lists host plants, and provides a categorization of pests to monitor their presence and effect. The 

user can filter and browse the database by choosing the country of interest and status (i.e. absent, present, 

restricted distribution). For instance, Figure 7 - Figure 12 are images to present Spodoptera littoralis (SPODLI). 

The datasheet which involves information for detection and identification, biology, pest significance, and 

phytosanitary measures also contributed for each species. Spodoptera littoralis is found to damage cotton 

groundnuts, rice, cucurbitaceous vegetables, potatoes, and sweet potatoes in glasshouses. Insects viruses, 

and symptoms images included in this report have been listed as present and widespread in Cyprus in the 

database as of 1/11/2024.  
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Figure 7 Spodoptera littoralis(SPODLI) 

 

Figure 8 Spodoptera littoralis (adult) 

 

Figure 9 Early 3rd instar 

 

Figure 10 Fully grown larva 

 

Figure 11 Egg cluster on chrysanthemum. 

 

Figure 12 4th instar. 
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Figure 13 Atherigona orientalis adult, dorsal view 

 

Figure 14 cucumber mosaic virus 

 

Figure 15 Atherigona orientalis late stage damage of pepper fruits 

 

Figure 16 Cucumber mosaic virus on chilli pepper 

 

 

Figure 17 Comstockaspis perniciosa 
 

Figure 18 Comstockaspis perniciosa infestation on apple branch 

 

 

Figure 19 Liriomyza huidobrensis 

 

Figure 20 Leaf mines on Liriomyza huidobrensis 
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Figure 21 Symptoms of Pepino mosaic virus on cherry 
tomatoes 

 

 

Figure 22 Leaf blistering symptoms from Pepino mosaic 
virus(PEPMV0) 

 

2.6.1 References 

[1] EPPO (European and Mediterranean Plant Protection Organization) Global Database Online Posting: 

https://www.eppo.int/RESOURCES/eppo_databases/global_database    [Accessed 11/1/2024].  
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2.7 Commercially Available Cameras for Image Processing Applications 

There are many cameras that are commercially available. The listed cameras are suitable for computer vision-based 

applications. As seen from table 2, these products come in various shapes and sizes. The product characteristics 

tabulated on Table 2 where either obtained or derived from the product datasheets. Only the important characteristics 

for small sized unmanned applications have been include in the analysis. 

 

Figure 23: AVIOTEC IP Starlight 8000 Video-Based Fire Detection. (Bosch, 2016) 

 

Figure 24: Fixed-Mount Thermal Camera FLIR A50/A70 Smart Sensor. (FLIR, 2022) 

 

Figure 25: SR7FIRE-MD-DUAL system (thermal visible camera) for fire detection on industrial environment. 
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Figure 26: OAK SoM for depth and AI processing 

 

 

 

 

Table 2: Comparison of Commercially Available Cameras for Image Processing Applications 

Product Compression 
Max FPS and 

Resolution 

Weight 

(kg) 

Dimensions 

(mm) 

Power 

Requirements 

Price 

(US$) 

Bosch AVIOTEC 

FCS-8000-VFD-B 
H.264, MJPEG 

30fps at 

1080P 
0.855 78 x 66 x140 12V, 9W 4,563.25 

FLIR A50/A70 

H.264, 

MPEG4, 

MJPEG 

30fps at 1280 

× 960 
NA NA 24/48V, 8W 7,299.00 

SR7FIRE-MD-

DUAL system 

(thermal visible 

camera) 

H.264/MPEG-4 

& MJPEG 

25fps at 

1080P  
NA NA 12V, 9W 22,598.56 

Luxonis OAK-D for 

depth and AI 

processing 

H.264, H.265, 

MJPEG 

60fps at 

1080P 
0.115 110x54.5x33 5V, 7.5W 249.00 

 

The computer vision-based flame detection systems tabulated on Table 2 are highly accurate in detecting fire in real 

time. It is impressive that all systems consume lower than 10W of electric power while offering HD quality picture for 

processing. However, the SR7FIRE-MD-DUAL system (thermal visible camera) is very expensive and cannot be afforded by this 
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proof of concept project. In addition both SR7FIRE-MD-DUAL system and the FLIR A50/A70 even though their weight characteristics 

are not reported yet they look heavy and they are not suitable for small unmanned system applications.  

In conclusion, the fourth option is the most suitable for small unmanned applications since its weight it is only 0.115kg, its price is 

only 249 US$ and finally it is also suitable for distance measurements. 

 

2.7.1 References 

[1] Bosch AVIOTEC IP STARLIGHT 8000 (FCS-8000-VFD-B), “Video-based fire detection”, Online Posting: 

https://commerce.boschsecurity.com/us/en/Video-based-fire-detection/p/F.01U.317.536/ [Accessed 1/6/23]. 

[2] Bosch AVIOTEC IP STARLIGHT 8000, “FCS-8000-VFD-B - Datasheets”, Online Posting: https://resources-

boschsecurity-cdn.azureedge.net/public/documents/AVIOTEC_IP_starlight_Data_sheet_elGR_20875957771.pdf  

[Accessed 1/6/23]. 

[3] FLIR A50/A70 Smart Sensor, “Model: 89995-0101-T300389 - Datasheets”, Online Posting: 

https://www.flir.eu/products/a50_a70-smart-sensor/?vertical=rd+science&segment=solutions [Accessed 1/6/23]. 

[4] SR7FIRE-MD-DUAL SYSTEM, “Datasheet - SR7FIRE-MD-DUAL system (thermal visible camera)”, Online Posting: 

https://www.sevecu.com/term-68-detail [Accessed 1/6/23]. 

[5] Luxonis OAK-D for depth and AI processing, “Hardware specifications”, Online Posting: 

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK/ [Accessed 1/6/23]. 
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2.8 Commercially Available Spectral Cameras for Small Unmanned System Applications 

For precision agriculture applications, both multispectral and hyper-spectral cameras are used. Both technologies 

capture images with higher spectral resolution compared to what the human eye can see (color perception). Hyper-

spectral cameras offer higher spectral resolution compared to multispectral cameras. Spectral resolution is the number 

of bands they record and how narrow the bands are. Hyper-spectral cameras have more than 100 bands, whereas 

multispectral ones have considerably less. 

 

Figure 27: Hyperspectral vs. Multispectral data [1] 

 

As nicely presented by Figure 27, a hyperspectral camera provides smooth spectra. The spectra provided by 

multispectral cameras are more like stairs or saw teeth without the ability to depict acute spectral signatures [1]. 

 

 

Figure 28: Visible and IR light spectrum [2] 

 

Infrared imaging is generally very effective for obtaining visual detail below the surface of an object. It’s proved 

incredibly useful in machine vision as it’s possible to obtain information that just isn’t viable using visible light. On the 
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other hand, Short wave Infrared (SWIR) imaging is commonly applied in order to perform tasks such as identifying 

bruising in fresh produce such as fruit and vegetables, defect identification in silicon items, and detecting different types 

of plastic in waste and recycling industries [2]. 

From figures 28 and 29, it can be derived that the band wavelengths are as followed: 

 BLUE Band 3 (0.45-0.51 um) 

 GREEN Band 2 (0.53-0.59 um) 

 RED Band 1 (0.64-0.67 um) 

 NEAR INFRARED (NIR) Band 5 (0.85-0.88 um) 

 SHORT-WAVE INFRARED (SWIR 1) Band 4 (1.57-1.65 um) 

 SHORT-WAVE INFRARED (SWIR 2) Band 4 (2.11-2.29 um) 

 

 

Figure 29: Wavelength and Band Allocation [3] 

 

On the other hand, Hyperspectral images compared to multispectral ones, consists of hundreds or thousands of much 

narrower bands as shown on Figure 30. The band width could be as narrow as 10 to 20 nm. 

 

 

Figure 30: Hyperspectral Narrower Bands [3] 
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However, having the experience from the cameras for image processing presented in section 2.7, the price was the 

number one requirement for selecting a multispectral camera for the DEMETRA project. After an extensive online survey 

the following findings are reported as follows: 

Table 3: Comparative Study of Commercially Available AI Cameras 

Camera Characteristics Price 
Suitability for DEMETRA Project 

Advantages Disadvantages 

UAVfordrone  [4] Hyperspectral camera 

with DJI M300 Drone 

US$29,900 

(incl. Educ. Discount) 

 Hyperspectral 

Cam 

 Complete System 

including UAV 

Not Affordable 

Headwall Photonics [5] Hyperspectral Camera 

with analysing software 

US$ 100,000 Hyperspectral Cam 

 

Not Affordable 

Imec HIS [6] Hyperspectral Camera 

with analysing software 

€18,000 

(incl. Educ. Discount) 

Hyperspectral Cam 

 

Not Affordable 

Parrot Sequoia [7][8] 

 

Multispectral Camera 

4 Bands: 550 – 790nm 

 

€3,500 Affordable  It is approaching 

End of Life 

 Price does not 

include a UAV 

Micasense RedEdge-

P [8][9] 

Multispectral Camera 

5 Bands 475nm – 

872nm 

€8,000  

Price does not include 

a UAV 

5 Bands  

475nm – 872nm 

 Not Affordable  

DJI Mavic 3M (DJI 

Mavic 3 

Multispectral 

Edition) [8][10] 

Multspectral camera 

inclusing DJI Mavic 3M 

Green (G): 560 ± 16 

nm; 

4 Bands  

Green (G): 560 ± 16 nm 

Red (R): 650 ± 16 nm; 

Red Edge (RE): 730 ± 16 

nm; 

Near infrared (NIR): 

860 ± 26 nm; 

€4,750 for complete 

system and delivery 

charges 

Affordable  4 bands instead of 

5 
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Figure 31: Hyperspectral camera with DJI M300 Drone [4] 

 

Figure 32: Nano HP (400-1000nm) Hyperspectral Imaging Package [5] 

 

Figure 33: Parrot Sequoia Multi-Spectral Camera [7], [8] 
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Some commercially available hyper-spectral and multispectral cameras and unmanned aerial systems are presented by 

Figures 31 to 33 and a bigger selection is presented on Table 3. The results of the comparative study of commercially 

available products that are tabulated on Table 3, show that hyper-spectral cameras are not affordable for the DEMETRA 

project which has a budget of €40,000.   Hyperspectral camera solutions including educational discounts are exceeding 

€18,000 which is equivalent to 45% of the project budget.  

On the other hand multispectral camera solutions are affordable and feasible with available prices being below €8,000. 

Parrot Sequoia multispectral camera is the cheapest solution at a price of €3,500. It offers 4 spectral bands in the range 

of 550 – 790nm but it is approaching its eng-of-life. On the other hand, Micasense RedEdge-P offers 5 bands in the 

range of 475nm – 872nm at a higher than double cost of €8,000.  

Finally, DJI offers a complete solution of a UAV with a multispectral camera, the DJI Mavic 3M (DJI Mavic 3 Multispectral 

Edition) at a total cost of €4,750. The multispectral camera offers only 4 bands. However, the spectral range of 650 to  

860 is comparable to the other solutions. 

Therefore, after an extensive comparison and analysis it was concluded that for the purposes of the DEMETRA project, 

the DJI Mavic 3M (DJI Mavic 3 Multispectral Edition) is the best solution. It is a complete system including a UAV and a 

multispectral camera at an affordable price. 

 

2.8.1 References 

[1] Specim – A Konica Minolta Company, “HYPERSPECTRAL VS MULTISPECTRAL CAMERAS: UNDERSTANDING 

ADVANTAGES AND LIMITATIONS IN SPECTRAL IMAGING”, Online Posting: 

https://www.specim.com/technology/hyperspectral-vs-multispectral-cameras/ [Accessed 1/6/23]. 

[2] Clear View, “Non-Visible Imaging: Short-Wave Infrared (SWIR)”, Online Posting: https://www.clearview-

imaging.com/en/blog/non-visible-imaging-short-wave-infrared-swir [Accessed 1/6/23]. 

[3] GISGeography, “Multispectral vs Hyperspectral Imagery Explained”, Online Posting: 

https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/ [Accessed 1/6/23]. 

[4] Drone for Agriculture, “Hyperspectral Camera and DJI M300”, Online Posting: https://www.uavfordrone.com/ 

[Accessed 1/6/23]. 
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[6] Imec HIS, “Hyperspectral imaging”, Online Posting: https://www.imec-int.com/en/hyperspectral-imaging [Accessed 

1/6/23]. 
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[Accessed 1/6/23]. 

[8] Geosense, “Multispectral Cameras - Parrot Sequoia”, Online Posting: https://www.geosense.gr/spectral-cameras/ 

[Accessed 1/6/23]. 
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[10] DJI Agriculture, “DJI Mavic 3M”, Online Posting: https://ag.dji.com/mavic-3-m/specs [Accessed 1/6/23]. 
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2.9 Commercially Available UAV for DEMETRA Project 

As concluded in section 2.8, for the purposes of the DEMETRA project, the DJI Mavic 3M (DJI Mavic 3 Multispectral 

Edition) was the best solution. It is a complete system including a UAV and a multispectral camera at an affordable price. 

In this section we will examine the technical characteristics of the DJI 3M UAV. The characteristics were either derived 

or directly obtained from the product datasheets [1]. 

 

Figure 34: DJI Mavic 3M (Multispectral Edition) (1) 

 

Table 4: DJI Mavic 3M Specifications 

Weight 

(kg) 

Dimensions 

(mm) 

Max Flight Time (without 

wind) 
RGB Camera 

0.951 347.5×283×139.6 43 minutes Single shot: 20 MP 

Timelapse: 20 MP 

Multispectral Camera Gimbal RTK Module Image Transmission System 

Green (G): 560 ± 16 nm; 

Red (R): 650 ± 16 nm; 

Red Edge (RE): 730 ± 16 nm; 

Near infrared (NIR): 860 ± 26 

nm; 

Tilt: -135° to 45° 

Roll: -45° to 45° 

Pan: -27° to 27° 

Fixed RTK: 

Horizontal: 1 cm + 1 ppm; 

Vertical: 1.5 cm + 1 ppm 

2.400-2.4835 GHz 

5.725-5.850 GHz 

 

As shown from the technical characteristics tabulated on Table 3, the DJI is compact and light weight. With a total weight 

of nearly 1kg and diagonal dimensions of 38cm it is very convenient to fly inside green houses. In addition it is fully 
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equipped not only with the multispectral camera but with an additional RGB camera and both are stabilised by a 3-axis 

gimbal system and communication technologies for control and data transfer. 

2.9.1 References 

[1] DJI Agriculture, “DJI Mavic 3M”, Online Posting: https://ag.dji.com/mavic-3-m/specs [Accessed 1/6/23]. 
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2.10 Commercially Available Sensors for Greenhouse Applications 

The literature review of smart greenhouses presented in section 2.2, including some additional references on sensor 

technologies and the importance measured data for agricultural applications, revealed the necessity of the following 

measured parameters; Air temperature, Air humidity, Sunlight, Carbon dioxide, Soil moisture and Mineral soil 

composition [1]-[4]. 

Greenhouses offer controlled environmental conditions hence crop cultivation is achieved and optimized by avoiding 

extreme temperatures, under and over watering, as well as luck of nutrients on the soil. In addition, the importance of 

sunlight, carbon dioxide and soil moisture relates to the process of photosynthesis where plants use to synthesize 

nutrients from carbon dioxide and water. 

The project coordinator has extensive experience in electronics and sensor integration for various applications including 

wearable devices. Hence, from experience the following solutions were proposed to meet the project requirements. 

2.10.1 Controller: STM32 Nucleo-F303RE Microcontroller 

The STM32 Nucleo-F303RE (Fig. 35) is an easy to use microcontroller that has an integrated ST-Link/v2-1, used for the 

programming under mbed environment. The board can operate with 5 to 15 Volts and has a flexible power-supply 

options like ST-Link, USB Vbus or external sources. It has the Arm cortex M4 core that is clocked at 72MHz.  

 

 

Figure 35: STM32 Nucleo-F303RE Microcontroller [5] 

Looking closely to the the F303 microcontroller pinout on Figure 36, it can be seen that it has numerous analogue and 

digital inputs and can supports communication protocols such as RS-232, I2C which are required for sensor integration. 

In addition, multiple pulse width modulation (pwm) digital outputs can accommodate actuators (servos, fans, relays, 

etc) which are required for starting and stopping the watering process, opening and closing windows and fans for 

temperature control etc.  



 
  

 

 

Page 54 of 79 
CONCEPT/0722/0100 –  Deliverable D3.1 

 

Figure 36: Pinout for STM32 Nucleo-F303RE Microcontroller [5] 

This microcontroller can nicely serve the needs for this project because it supports all the necessary communication 

protocols and has ample ports that were needed for the required sensors and actuators. 

2.10.2 Display: uLCD-144-G2 

Monitoring systems need the integration of displays for outputting the measured data as well as for troubleshooting. 

For these purposes the uLCD-144-G2 screen is proposed. It is a colored and compact monitor; 1.44 inch screen, 52mm 

wide and 77mm long. The operating voltage is between 4.5V and 5.5V, and it communicates with the microcontroller 

via serial communication protocol [6]. 

 

Figure 37: 2.10.2 Display: uLCD-144-G2 [6] 

2.10.3 Temperature & Humidity sensor - DHT-11 

The DHT-11 is a small size, low power digital temperature and humidity sensor. It has 15.5mm x 12mm x 5.5mm of body 

size and is working with 3 to 5V power with a maximum current up to 2.5mA. It has 5% accuracy for 20 to 80% of 

humidity and ±2°C accuracy for 0-50°C of temperature. The sensor uses a capacitive humidity sensor and a thermistor 
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to measure the surrounding air. In addition the DHT-11 sensors contains a chip that does analog to digital conversion 

and exports a digital signal on the data pin that can be used for reading the temperature and humidity [7]. 

 

Figure 38: Temperature & Humidity sensor - DHT-11 [7] 

The pinout mapping of the DHT-11 temperature and humidity sensor are presented on Figure 38. The sensor uses just 

one signal wire to transmit data to the microcontroller (pin 2). It is powered by pin1 with 3.3 or 5V and ground wires by 

pin 3. A 10K Ohm pull-up resistor is needed between the signal line and voltage line to make sure the signal level stays 

high by default. 

The DHT11 measures the electrical resistance with a moisture holding substrate component between two electrodes 

to detect water condensation. When the water vapor is absorbed by the substrate, ions are discharged by the 

component which increases the conductivity between the electrodes. The change in resistance between the two 

electrodes is proportional to the relative humidity. Higher relative humidity decreases the resistance between the 

electrodes, while lower relative humidity increases the resistance between the electrodes [8]. 

The DHT11 measures temperature with a surface mounted NTC temperature sensor (thermistor) built into the unit. 

NTC (Negative Temperature Coefficient) is a resistor with a negative temperature coefficient, in other words, the 

resistance decreases when the temperature rises. They are primarily used as resistive temperature sensors and current-

limiting devices. NTC sensors are typically used in a range from −55 to 200 °C [9-10]. 

2.10.4 pH Sensor  - SEN0161-V2 

SEN0161-V2 is an analog pH meter that is designed to measure the pH of a liquid and reflect it is acidity or alkalinity. 

The onboard voltage regulator chip supports the wide voltage supply of 3.3-5.5V voltage availability of the main control 

board. The output signal is filtered by hardware and has low overall jitter and it has ±0.1 measurement accuracy at 25℃.  
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The pH test is a scale of hydrogen ion activity in a liquid. The pH test has a wide range of uses in medicine, chemistry, 

and agriculture. Under standard conditions the pH number indicates when the liquid is acidic (pH<7), neutral (pH=7) or 

alkaline (pH>7) with a range between 0 and 14 (figure 39) [11]. 

 

Figure 39:  pH Scale [11] 

 

Figure 40: Board Pin mapping [12] 

The pin mapping of the pH sensor is shown on Figure 40. The sensor uses one signal wire to transmit data to the 

microcontroller (pin 3) and is connected to an analog input. Power comes from separate a pin 3.3 up to 5.5V (pin 2) and 

ground wires (pin 1). At pin 4 the pH probe connector is connected. 

2.10.5 Air Quality Sensor - MQ-135  

MQ-135 is an air quality sensor that is suitable for detecting gases like Ammonia (NH3), Sulfur (S), Benzene (C6H6), CO2 

and other harmful gases. When the level of these gases surpasses a threshold limit in the air, the analogue output pin, 

outputs an analogue voltage which can be used to extract the level of these gases in the atmosphere [13]. The MQ-135 

operates from 2.5V up to 5.0V and it consumes about 150mA. The sensor provides both digital and analogue output. 
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Figure 41: MQ-135 Pin mapping [13] 

The pins of the MQ-135 air quality sensor can be seen in figure 41. Pins one and three are connected to the ground of 

the microcontroller, whereas pin 2 is connected to the voltage supply of 5V, and finally pin four is connected to an 

analog pin of the microcontroller where it extracts the raw data of the sensor. In order for the MQ-135 sensor to extract 

the correct values, it needs to power up for a pre-heat duration. This pre-heat time is normally between 30 seconds to 

a couple of minutes. 

2.10.6 Light Intensity Sensor – Custom made Using GL5516 LDR 

For the purposes of this project the GL5516 LDR (Light Dependant Resistor) sensor was used. The GL5516 LDR sensor is 

a light dependant resistor which is constructed from a semiconductor materials and the conductivity changes based on 

the intensity of the light, called photoconductivity. A LDR sensor can be used in light-sensitive detector circuits and light 

and dark activated switching circuits. The sensor’s size is 5mm x 2mm and is functioning with 5V [14]. 

 

Figure 42: LDR in voltage divider configuration 

The GL5516 LDR sensor is connected to the microcontroller in voltage divider configuration, as shown on figure 42. The 

voltage that appears at the analogue input (A1) will vary depending on the amount of light intensity that is hitting the 
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sensor. The LDR is connected to 5V. A pull-down resistor is required for the wiring of the sensor. A 10 kΩ resistor (R1) 

was chosen for the purposes of this project [15]. 

2.10.7 Soil Moisture Sensor – Custom made 

Soil moisture sensors estimate volumetric water content in the soil. Most of them are stationary and are placed in 

predetermined locations and depths in the field. By using some other property of the soil, such as electrical resistance, 

dielectric constant, or interaction with neutrons, as a proxy for the moisture content the sensor measures the soil 

moisture in the field. In this project the estimation of the soil moisture is done by the measurement of the electrical 

resistance of the soil [16]. 

 

Figure 43: Soil Moisture Circuit 

To calculate the resistance of the soil, a standard voltage divider circuit with two electrodes was implemented (figure 

26). The circuit is operating with 3.3V and it is connected to an analogue input of the microcontroller (A4). The soil 

moisture circuit uses a 5.6 kΩ resistor which was selected after a big amount of experimentation. Also two electrodes 

are plugged in the soil in order to measure the electrical resistance of the soil (Figure 43). 
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2.11 Vegetation Indexes 

Multispectral imaging captures multiple image layers with different wavelength bands. A multispectral image 

typically consists of four bands with RGB (Red, Blue, and Green) and Near Infrared with a wavelength range 

of 750 – 900 nm.  

The analysis of multispectral imaging through geographic information system software, such as the ‘Free and 

Open Source’ QGIS may produce various vegetation indexes and maps to support precision agriculture. QGIS 

is a software in which geospatial information can be edited, analysed and visualised and it can be utilized in 

remote sensing. Raster calculator (stock tool) is used to load raster band layers perform mathematical 

operations on raster data, on the basis of existing raster pixel values [1]. Raster data refers to pixelated data 

(matrix of pixels) where every pixel corresponds to a certain geographical location and each raster contains 

spatial information (continuous or categorical) about that location.  

 

Figure 44 A raster dataset is composed of a matrix of pixels representing a geographical region, with each pixel 
connected to certain spatial information of that region [1] 

 

Example data from multispectral camera is presented by Figures 45 to 49. The 4 band data is divided in Red, 

Green, NIR and Red Edge. It is evident that to the human eye there are minor differences between the data. 

However, as it is evident in the following analysis each index provides different valuable information, 
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Figure 45 Green 

 

Figure 46 NIR 

 

Figure 47 RED 

 

Figure 48 REDGE 

 

Figure 49 Calculation of NDVI with raster calculator in QGIS 
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2.11.1 NDVI (Normalized Difference Vegetation Index) 

NDVI is one of the most popular indexes used for vegetation assessment. Research suggests that the NDVI is 

effective for the classification of different vegetation between savannah, dense forest, non-forest, and 

agricultural fields and identifies seasonal differences [1]. Since healthy vegetation with more chlorophyll 

content absorbs light within the blue and red wavelengths spectrum and reflects near Infrared (NIR) and green 

wavelengths the index may be calculated using the Red and Near Infrared channels, with equation (1). 

NDVI =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
  (1) 

The result of the calculation provides a value between -1 and +1. High reflectance in the Near Infrared band 

and low reflectance in the red channel will generate a higher NDVI value. NDVI index from 0.6 – 0.9 is related 

to dense vegetation similar to tropical forests or crops at the growth peak [2] [3].  

 

Figure 50 NDVI result of analysis 
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Figure 51 Colour Ramp with corresponding NDVI values 

The histogram in 52 illustrates a histogram produced in QGIS, which presents the distribution of pixel values 
in the analysed NDVI image. As may be observed the frequency of negative values is greater which implies 
that the surface with no vegetation such as bare soil, rocks on water bodies is larger. Healthy vegetation with 
an NDVI value of approximately 0.6 is also present in the analysed image but significantly smaller. 

 

Figure 52 Histogram on NDVI 
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2.11.2 (NDWI) Normalized Difference Water Index  

The (NDWI) Normalized Difference Water Index was also produced using QGIS. This index can be calculated 

using equation 2. 

𝑁𝐷𝑊𝐼 =  (𝐺𝑅𝐸𝐸𝑁 –  𝑁𝐼𝑅) / (𝐺𝑅𝐸𝐸𝑁 +  𝑁𝐼𝑅)  (2) 

NDWI provides information about the likelihood of water body presence. In this case, the generated value is 

also within -1 and +1 range where NDWI values closer to 1 generally suggest the presence of water 

 

Figure 53 NDWI calculated with QGIS 
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Figure 54 Histogram for NDWI 

. 

Figure 53 presents the NDWI calculated with QGIS whereas the histogram in Figure 54 illustrates the 

corresponding histogram where the largest NDWI value is approximately 0.42. However, it is important to 

note that there is no universal threshold value that could be considered in any given analysis [4]. Therefore a 

study of the area must be performed to determine the threshold value since various parameters such as 

atmospheric conditions and other landscape characteristics may yield different results. 
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2.11.3 OSAVI (Optimized Soil-Adjusted Vegetation Index) 

 

OSAVI is another vegetation index which is based on soil adjusted vegetation index (SAVI) but uses a constant 

value of 0.16 to decrease the soil background influence [5]. According to studies, this value provides a more 

optimized calculation of vegetation cover by adjusting the sensitivity to soil brightness which may undermine 

the reliability of the NDVI. It is found to be more effective in areas with sparse vegetation where there is visible 

soil. Equation 3 is the formula for calculating the OSAVI [6].  

OSAVI =  
NIR − R

NIR + R + 0.16
  (3) 

 

2.11.4 NDRE (Normalized Difference Red Edge Index) 

 

NDRE is an index used to evaluate the health of crops by estimating the amount of chlorophyll content in the 

plants. In contrast with the NDVI, the formula for calculating NDRE uses REDGE band (with a wavelength of 

717 nm) instead of the red band (equation 4). Research suggests that NDRE may be more suitable for the 

evaluation of leaves since they have better absorption in REDGE wavelength than red [7]. The NDVI can only 

evaluate the health status of vegetation with the red-visual band which is absorbed only on the top of the 

canopy, but it cannot contribute to the evaluation of the lower levels of the plants when there are layers of 

leaves [8]. The selection of NDRE might be preferable between the middle and late growth stages when the 

leaves of the crop have a denser concentration of chlorophyll and the REDGE wavelength will be more 

absorbed than the red wavelength. However, it may not be as effective as NDVI for the evaluation of larger 

land areas [7]. 

𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅− 𝑅𝐸𝐷𝐺𝐸

𝑁𝐼𝑅+𝑅𝐸𝐷𝐺𝐸
   (4) 
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2.11.5 GNDVI (Green Normalized Difference Vegetation Index) 

This index utilizes the green channel of the multispectral image. It can serve as an indicator of photosynthetic 

activity within the vegetation cover and identify variation and levels of greenness in the crop [9]. GNDVI is also 

more effective in estimating nitrogen and moisture content in the crop canopy [10]. GNDVI is used in 

evaluating mature vegetation.  

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅− 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅+𝐺𝑅𝐸𝐸𝑁
   (5) 

 

2.11.6 LCI (Leaf chlorophyll index) 

This index is used to calculate the amount of chlorophyll in the leaves and is more reliable in the late summer 

months since the patterns are correlated with the crops' final yield [11]. 

𝐿𝐶𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷𝐺𝐸

𝑁𝐼𝑅+𝑅𝐸𝐷
  (6) 
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2.12 Commercially Available mmWave Radar Sensors 

The current market availability of mmWave radar sensors has steered this investigation in mainly two directions: one 

using 2-DoF (Degrees of Freedom) sensors that support ranging and azimuth measurements and one using 3-DoF 

sensors that additionally measure the elevation of targets. For each of these cases we performed a precision analysis of 

the most predominantly-used mmWave ranging sensors currently in the market and thereafter used the 

ranging/angular information to conduct positioning using various methods. For the 2DOF case we consider sensors that 

have the ability to measure range and azimuth (the Texas Instruments IWR1642Boost and the Infineon Distance2Go) 

while for the 3DOF that additionally measures elevation we used the Texas Instruments IWR1843. 

 

Figure 55: 2-DOF mmWave Sensors: TI's IWR1642BOOST (left) and Infenion's Distance2Go (right) 

 

The two mmWwave radar sensors that were used for the 2-DOF precision analysis were the Texas Instruments (TI) 

IWR1642BOOST and Infineon Distance2Go. The TI sensor is equipped with 4 receiving (Rx) and 2 transmitting (Tx) 

antennas operating at frequencies between 76-81GHz with a 120-degree field of view and ranging capabilities of up to 

72 meters. In contrast, the Infineon Distance2Go mmWave sensor is equipped with 1 Rx and 1 Tx antenna and operates 

between 24-26GHz with  a field of view of 20 degrees and a maximum detection range of around 20 meters. While the 

TI sensor performs range and angle measurements, the Infineon one can only measure range. The experimental setup 

involved utilizing a DJI Air 2S drone as the target for ranging and angular measurements. It is a compact drone with 

dimensions of 183.0X77.0X253.0mm. 

Similarly to IWR1642BOOST, the IWR1843BOOST possesses a Frequency Modulated Continuous Wave (FMCW) 

transceiver which enables the measurement of range, azimuth angle and velocity of the target. However, due to an 

additional TX antenna, in addition to the azimuth angling information, it is also able to provide the elevation data of the 

target. A similar system setup was used for this sensor like the one used for the IWR1642BOOST in which each sensor 
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is connected to a Raspberry PI, through which the collected context is parsed and then sent to a central PC through a 

UDP connection. 

 

Figure 56: IWR1843BOOST Sensor 

For the indoor positioning purposes of the DEMETRA project 5 such sensors will be used. 
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3 Used Cases and Scenarios 

A few measurement and simulation scenarios have been defined for the operational requirements and technical 

objectives of the project described in section Error! Reference source not found. to be met.  

Measurement scenarios include 3 types of environments (indoor cluttered, indoor open-space, outdoor open 

space) and different mobility use cases for each. For all the environments Static measurements are going to be 

conducted in order to access the angle and ranging precision at different orientations and distances respectively 

and will be used to test the accuracy of the geometric 3D positioning models. It is worth noting that the output of 

the precision analysis (ranging error) will form the input to the Kalman filters which will be used in the mobility use-

cases.  

The mobility use-cases are intended to be implemented to demonstrate accuracy of the 3D positioning system 

when context from mmWave sensors is fussed with context from IMU with use of various types of Kalman Filters. 

For the indoor cases, only low mobility will be considered which involves the target (preferably drone, but also balls 

and humans will be considered) moving at low pedestrian-level speeds typically between 0.6-1.4m/s. For the 

outdoor case we will also consider a use case of high mobility with the speed of the target set up to 20m/s 

(depending on the drone capability). For all the only one target will be used in the environment and visual AI will 

be optionally used if time allows it.  

Simulation scenarios will used also to assess the sensitivity of the implemented methods under various 

uncertainties. They will form an easy way to generate much location-specific data (ranges, angles) and introduce 

to it different levels of uncertainties/inaccuracies according to the precision analysis that will conducted in the 

static uses cases.  

3.1.1 Indoor Cluttered Environment 

 Static Case Low Mobility 

Environment Indoor 

Environment Dimensions 
(72pprox..) 

50-60 m2 

Clutter HIGH – Consisting of benches, equipment on the benches, many 
metallic surfaces spread around the room 

Clutter Mobility Stationary Stationary 
Number of Sensors Up to 5 

Target Mobility  Stationary Pedestrian-Level (0.6-1.4m/s) 
Number of Targets 1 1 

Kalman Filtering No Yes 

Targets Drones and/or Balls and/or 
Humans 

 

3D Positioning Yes 
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Sensors mmWave, Cameras mmWave, IMU, Cameras 
Applicability/Investigations For precision analysis and 

preliminary 3D positioning using 
geometric methods without 

fusing it with data from IMUs 

For 3D positioning using data 
from both mmWave and IMUs 

Parameters to Measure  Distance from Sensors 

 AoD from Sensors. (mostly 
azimuth but also elevation if the 
sensors support it) 

 Distance from Sensors 

 AoD from Sensors. (mostly 
azimuth but also elevation if 
the sensors support it) 

 IMU Data (Accelerometer 
[x,y,z], gyroscope [x,y,z] and 
magnetometer [x,y,z] 

 

 

3.1.2 Indoor Open space Environment 

 Static Case Low Mobility 

Environment Indoor 
Environment Dimensions 

(approx.) 
50-60 m2 

Clutter Low – Consisting of desks and chairs. No metallic surfaces 
Clutter Mobility Stationary Stationary 

Number of Sensors Up to 5 

Target Mobility  Stationary Pedestrian-Level (0.6-1.4m/s) 
Number of Targets 1 1 

Kalman Filtering No Yes 
Targets Drones and/or Balls and/or 

Humans 
 

3D Positioning Yes 

Sensors mmWave, Cameras mmWave, IMU, Cameras 
Applicability/Investigations For precision analysis and 

preliminary 3D positioning using 
geometric methods without 

fusing it with data from IMUs 

For 3D positioning using data 
from both mmWave and IMUs 

Parameters to Measure  Distance from Sensors 

 AoD from Sensors. (mostly 
azimuth but also elevation if the 
sensors support it) 

 Distance from Sensors 

 AoD from Sensors. (mostly 
azimuth but also elevation if 
the sensors support it) 

 IMU Data (Accelerometer 
[x,y,z], gyroscope [x,y,z] and 
magnetometer [x,y,z] 
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3.1.3 Outdoor Open Space Environment 

 Static Case Low Mobility High Mobility 

Environment Outdoor 
Environment Dimensions 

(approx.) 
50-100 m2 

Depending on the capability of the sensors 

Clutter None – Open Space 
Clutter Mobility Stationary 

Number of Sensors Up to 5 

Target Mobility  Stationary Pedestrian-Level 
(0.6-1.4m/s) 

Average Drone 
Mobility (up to 

20m/s) 
Number of Targets 1 1 1 

Kalman Filtering No Yes Yes 

Targets Drones and/or Balls and/or Humans 

3D Positioning Yes 
Sensors mmWave, Cameras mmWave, IMU, Cameras 

Applicability/Investigations For precision analysis 
and preliminary 3D 
positioning using 

geometric methods 
without fusing it with 

data from IMUs 

For 3D positioning using data from both 
mmWave and IMUs 

Parameters to Measure  Distance from 
Sensors 

 AoD from Sensors. 
(mostly azimuth but 
also elevation if the 
sensors support it) 

 Distance from Sensors 

 AoD from Sensors. (mostly azimuth but 
also elevation if the sensors support it) 

 IMU Data (Accelerometer [x,y,z], 
gyroscope [x,y,z] and magnetometer 
[x,y,z] 
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4 Metrics/Key Performance Indicators and Targets 

To assess the performance of the mmWave Sensors and thereafter the accuracy of the developed 3D positioning 

algorithms the following metrics/KPIs have been set together with their target values. The target values have been 

selected based on what is currently reported in the literature but also in conjunction with the maximum dimension 

of the target to be detected.  

4.1 Precision Analysis KPIs 

For the precision analysis the actual error between the true value and the measured value will be recorded for 

both the ranging measurement and the angle measurements. This means that this error can either be positive or 

negative. For every measurement 𝑖 the error can be calculated as follows 

𝐸𝑟𝑟𝑜𝑟𝑖 = 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 

To estimate the average error of the measurement, only positive values will be considered. In this respect we will 

calculate two metrics. These are the average absolute error and the mean squared error calculated using the 

following equations for m measurements 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑚
∑|𝐸𝑟𝑟𝑜𝑟𝑖|

𝑚

𝑖=1

 

𝑅𝑀𝑆 𝐸𝑅𝑟𝑜𝑟 =
1

𝑚
∑ 𝐸𝑟𝑟𝑜𝑟𝑖

2

𝑚

𝑖=1

 

 

4.2 3D Positioning Analysis KPIs 

For the 3D positioning analysis, the most important performance parameter is distance error from the true value. 

This is the Euclidean distance between the ground truth 3D points and the one estimated by the positioning 

algorithm.  

Given that: 

𝑇𝑟𝑢𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) = [𝑥𝑇 𝑦𝑇 𝑧𝑇] 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = [𝑥𝑃 𝑦𝑃 𝑧𝑃] 

The distance error for a single estimation is estimated as follows: 

3𝐷 𝐸𝑟𝑟𝑜𝑟𝑖 = √(𝑥𝑇 − 𝑥𝑃)2 + (𝑦𝑇 − 𝑦𝑃)2 + (𝑧𝑇 − 𝑧𝑃)2 
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The average absolute error and RMS error can be estimated using the two equations above.  

As it is also important to access the error in each axis the following errors need to be estimated  

𝛥𝑥𝑖 = 𝑥𝑇𝑖 − 𝑥𝑃𝑖 

𝛥𝑦𝑖 = 𝑦𝑖 − 𝑦𝑃𝑖  

𝛥𝑧𝑖 = 𝑧𝑇𝑖 − 𝑧𝑃𝑖 

Likewise the average absolute error and RMS error can be estimated using the two equations above. 
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5 Technical Specifications 

Considering the technical objectives, operational requirements, use cases and scenarios described above 

the following equipment is needed: 

5.1 Hardware 

Type Model Options Quantity 

mmWave Sensors Texas Instruments 

IWR1642BOOST 

5 

 Texas Instruments 

IWR1843BOOST 

 

 Infineon  DISTANCE2GOL  

Drone DJI Air 2S, DJI Mavic 3M 1 

 Any other custom-built drone  

IMU 9DOF IMU - 9250 2 

Cameras Open CV AI Camera OAK-D 2 

Microcontrollers Raspberry Pi4  5 

 ESP32 with Wifi Connection 2 

Laptop Computer  Any Windows Based Computer 1 

Desktop Computer Any Windows Based Computer  1 

USB-3 to USB-c cables  At least 5 meters to 5 

Power Banks to power the 

microcontrollers 

USB output 8 

UPS for the central desktop PC Any 1 

 

5.2 Software 

The following software tools will be needed: 

 MATLAB 

 Python 

 Arduino IDE 
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 PyCharm or Visual Studio Code 

 SQL Server Express 

 YOLO Convolutional Neural Network Algorithm 

 DJI Terra 

 Open Source QGIS 

 GPS-SDR-SIM: https://github.com/osqzss/gps-sdr-sim   (needs to be compiled in visual studio to run) 

 Visual studio: https://visualstudio.microsoft.com/vs/community/    

 Mission Planner: https://ardupilot.org/planner/docs/mission-planner-installation.html    

 PothosSDR: http://downloads.myriadrf.org/builds/PothosSDR/     

 SatGen V3: https://www.labsat.co.uk/index.php/en/customer-area/software-firmware   

 Latest RINEX navigation  ephemerides broadcast brdc file from Nasa. An account is required which can 

be created free: https://cddis.nasa.gov/archive/gnss/data/daily/2023/brdc/    

6 Summary of all Proposed KPIs 

6.1 Greenhouse Mentoring System 

The greenhouse monitoring system should have the following characteristics: 

• Temperature with accuracy of ±2oC 

• Relative Humidity with accuracy ±10% 

• Measurement and identification of CO2 gas 

• Measurement of pH with accuracy ±10% 

• Development of a Light Intensity Sensor 

• Development of a custom made Soil Moisture sensor with accuracy ±10% 

6.2 Image Processing 

Development of image processing capability for small UAV applications (compact, lightweight and low power). 

• Achieve state of the art or higher FPS with an accuracy higher than 80%. 

• Reduce power consumption on the single board computer 

• Dataset for insects in Cyprus 

• Detection at distance of maximum 6 meters 

https://github.com/osqzss/gps-sdr-sim
https://visualstudio.microsoft.com/vs/community/
https://ardupilot.org/planner/docs/mission-planner-installation.html
http://downloads.myriadrf.org/builds/PothosSDR/
https://www.labsat.co.uk/index.php/en/customer-area/software-firmware
https://cddis.nasa.gov/archive/gnss/data/daily/2023/brdc/
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6.3 UAV Flight and Multispectral Data Collection 

• Flight stability and immunity from vibrations 

• Multispectral Data Collection 

6.4 Multispectral Image Processing 

• Successful multispectral data analysis for various indices using software DJI Terra and open source 

QGIS 

6.5 Indoor Positioning 

Using AI Cameras or mmWave Radar sensors 

 Sub-meter accuracy  

6.6 Indoor Positioning by GPS Conversion and Retransmission 

 Sub-meter accuracy  


